n this study, data or X-ray images Fixable Image Transport System (FITS) of objects were analyzed, where energy was collected from the body by several sensors; each sensor receives energy within a specific range, and when energy was collected from all sensors, the image was formed carrying information about that body. The images can be transferred and stored easily. The images were analyzed using the DS9 program to obtain a spectrum for each object,an energy corresponding to the photons collected per second. This study analyzed images for two types of objects (globular and open clusters). The results showed that the five open star clusters contain roughly the same materials. The clusters are composed of Carbon, Sodium, Magnesium, Aluminum, Silicon, Phosphorus, Sulfur, Nickel, and Germanium, while globular clusters contain the same elements but differ from the elements in the other type in terms of type and abundance. The three stars cluster contains roughly the same material, Carbon, Silicon, Phosphorus, Nickel, and Germanium, except for a small percentage of Neon that appears in the NGC 6121 stars cluster.
Discriminant analysis is a technique used to distinguish and classification an individual to a group among a number of groups based on a linear combination of a set of relevant variables know discriminant function. In this research discriminant analysis used to analysis data from repeated measurements design. We will deal with the problem of discrimination and classification in the case of two groups by assuming the Compound Symmetry covariance structure under the assumption of normality for univariate repeated measures data.
... Show More
Within the framework of big data, energy issues are highly significant. Despite the significance of energy, theoretical studies focusing primarily on the issue of energy within big data analytics in relation to computational intelligent algorithms are scarce. The purpose of this study is to explore the theoretical aspects of energy issues in big data analytics in relation to computational intelligent algorithms since this is critical in exploring the emperica aspects of big data. In this chapter, we present a theoretical study of energy issues related to applications of computational intelligent algorithms in big data analytics. This work highlights that big data analytics using computational intelligent algorithms generates a very high amo
... Show MoreIntroduction: Nitrofurantoin (NFT) is abroad spectrum bactericidal antibiotic. The bioavailability of NFT is affected by many factors. Samafurantin® tablets containing 50 mg NFT were manufactured by Samarra drug industry. Urinary excretion studies were employed since; the urinary tract is the main site of NFT action and excretion. Objective: The objective of the study was to investigate the effect of Uricol® and food on secondary pharmacokinetic parameters of Samafurantin® tablets with different doses by applying urinary data. Methods: Twelve healthy male volunteers participated in this study. Urine samples were collected from each volunteer after overnight fasting at a specified time intervals which considered as a blank sample for meas
... Show MoreThe current research discusses the topic of the formal data within the methodological framework through defining the research problem, limits and objectives and defining the most important terms mentioned in this research. The theoretical framework in the first section addressed (the concept of the Bauhaus school, the philosophy of the Bauhaus school and the logical bases of this school). The second section dealt with (the most important elements and structural bases of the Bauhaus school) which are considered the most important formal data of this school and their implications on the fabrics and costumes design. The research came up with the most important indicators resulting from the theoretical framework.
Chapter three defined the
Abstract:
We can notice cluster data in social, health and behavioral sciences, so this type of data have a link between its observations and we can express these clusters through the relationship between measurements on units within the same group.
In this research, I estimate the reliability function of cluster function by using the seemingly unrelate
... Show MoreThe most significant function in oil exploration is determining the reservoir facies, which are based mostly on the primary features of rocks. Porosity, water saturation, and shale volume as well as sonic log and Bulk density are the types of input data utilized in Interactive Petrophysics software to compute rock facies. These data are used to create 15 clusters and four groups of rock facies. Furthermore, the accurate matching between core and well-log data is established by the neural network technique. In the current study, to evaluate the applicability of the cluster analysis approach, the result of rock facies from 29 wells derived from cluster analysis were utilized to redistribute the petrophysical properties for six units of Mishri
... Show MoreCarbonate reservoirs are an essential source of hydrocarbons worldwide, and their petrophysical properties play a crucial role in hydrocarbon production. Carbonate reservoirs' most critical petrophysical properties are porosity, permeability, and water saturation. A tight reservoir refers to a reservoir with low porosity and permeability, which means it is difficult for fluids to move from one side to another. This study's primary goal is to evaluate reservoir properties and lithological identification of the SADI Formation in the Halfaya oil field. It is considered one of Iraq's most significant oilfields, 35 km south of Amarah. The Sadi formation consists of four units: A, B1, B2, and B3. Sadi A was excluded as it was not filled with h
... Show More