This study evaluated the extent to which obturation materials bypass fractured endodontic instruments positioned in the middle and apical thirds of severely curved simulated root canals using different obturation techniques. Sixty resin blocks with simulated root canals were used, each with a 50° curvature, a 6.5 mm radius of curvature, and a length of 16.5 mm, prepared to an ISO #15 diameter and taper. Canals were shaped using ProTaper Universal files (Dentsply Maillefer) attached to an X-smart Plus endo motor (Dentsply), set at 3.5 Ncm torque and 250 rpm, up to size S2 at working length. To simulate fractures, F2 and F3 files were weakened 3 mm from the tip, then twisted to break in the apical and middle sections of the canal, respectively. All samples were sealed with GuttaFlow 2 and divided into three groups (n = 20/group) according to obturation technique: A) single cone, B) lateral condensation with a rotary spreader, and C) softcore obturators. Each group was then divided into two subgroups (n = 10) based on the instrument fracture location (1 = apical, 2 = middle). The linear intrusion of obturation materials through the fractured instruments was measured using ImageJ software and analyzed statistically with ANOVA, Tukey tests, and independent t-tests, with significance set at p<0.05. Material bypass in group B1 (3.27 ± 0.63 mm) was significantly greater than in group A1 (2.39 ± 0.44 mm) and group C1 (2.91 ± 0.77 mm). In group C2, bypass (5.76 ± 0.64 mm) was significantly higher than in group A2 (3.82 ± 0.2 mm) and group B2 (2.27 ± 0.96 mm). Additionally, bypass in group A2 was greater than in group B2, and group B1 had more bypass than B2, while group C2 exceeded C1. The lateral condensation technique with a rotary spreader and softcore obturators increased the bypass of obturation materials through fractured instruments in simulated curved canals. These techniques may thus enhance material flow in endodontic procedures involving instrument fractures.
The study of vegetative change of cities is one of the most important studies related to human life because of its direct correlation with the temporal conditions that occur. These include the economic problems that force people to move and look for job opportunities in the city, which leads to an increase in the population density of cities, especially for cities with an important economic and administrative location as in the capital city of Baghdad. In this study, the effect of the increasing in population density was analyzed on the urban planning of Baghdad city. The decreasing in vegetation was due to the increasing of urban areas on the outskirts of the city, which led to an increase in its area. Moreover, urban cities increased t
... Show MoreThe multimetric Phytoplankton Index of Biological Integrity (P-IBI) was applied throughout Rostov on Don city (Russia) on 8 Locations in Don River from April – October 2019. The P-IBI is composed from seven metrics: Species Richness Index (SRI), Density of Phytoplankton and total biomass of phytoplankton and Relative Abundance (RA) for blue-green Algae, Green Algae, Bacillariophyceae and Euglenaphyceae Algae. The average P-IBI values fell within the range of (45.09-52.4). Therefore, water throughout the entire study area was characterized by the equally "poor" quality. Negative points of anthropogenic impact detected at the stations are: Above the city of Rostov-on-Don (1 km, higher duct Aksai) was 38.57 i
... Show MoreExposure to cryogenic liquids can significantly impact the petrophysical properties of rock, affecting its density, porosity, permeability, and elastic properties. These effects can have important implications for various applications, including oil and gas production and carbon sequestration. Cryogenic liquid fracturing is a promising alternative to traditional hydraulic fracturing for exploiting unconventional oil and gas resources and geothermal energy. This technology offers several advantages over traditional hydraulic fracturing, including reduced water consumption, reduced formation damage, and a reduced risk of flow-back fluid contamination. In this study, an updated review of recent studies demonstrates how the
... Show MoreIn this research, the removal of cadmium (Cd) from simulated wastewater was investigated by using a fixed bed bio-electrochemical reactor. The effects of the main controlling factors on the performance of the removal process such as applied cell voltage, initial Cd concentration, pH of the catholyte, and the mesh number of the cathode were investigated. The results showed that the applied cell voltage had the main impact on the removal efficiency of cadmium where increasing the applied voltage led to higher removal efficiency. Meanwhile increasing the applied voltage was found to be given lower current efficiency and higher energy consumption. No significant effect of initial Cd concentration on the removal efficiency of cadmium b
... Show MoreIn this research, the removal of cadmium (Cd) from simulated wastewater was investigated by using a fixed bed bio-electrochemical reactor. The effects of the main controlling factors on the performance of the removal process such as applied cell voltage, initial Cd concentration, pH of the catholyte, and the mesh number of the cathode were investigated. The results showed that the applied cell voltage had the main impact on the removal efficiency of cadmium where increasing the applied voltage led to higher removal efficiency. Meanwhile increasing the applied voltage was found to be given lower current efficiency and higher energy consumption. No significant effect of initial Cd concentration on the removal efficie
... Show More