Preferred Language
Articles
/
wBfvpo0BVTCNdQwCAReY
Automatic generation of fuzzy classification rules using granulation-based adaptive clustering
...Show More Authors

Scopus Crossref
View Publication
Publication Date
Sat Jan 01 2022
Journal Name
Turkish Journal Of Physiotherapy And Rehabilitation
classification coco dataset using machine learning algorithms
...Show More Authors

In this paper, we used four classification methods to classify objects and compareamong these methods, these are K Nearest Neighbor's (KNN), Stochastic Gradient Descentlearning (SGD), Logistic Regression Algorithm(LR), and Multi-Layer Perceptron (MLP). Weused MCOCO dataset for classification and detection the objects, these dataset image wererandomly divided into training and testing datasets at a ratio of 7:3, respectively. In randomlyselect training and testing dataset images, converted the color images to the gray level, thenenhancement these gray images using the histogram equalization method, resize (20 x 20) fordataset image. Principal component analysis (PCA) was used for feature extraction, andfinally apply four classification metho

... Show More
Publication Date
Thu Mar 01 2018
Journal Name
Journal Of Engineering
Implementation of Power System Stabilizer Based on Conventional and Fuzzy Logic Controllers
...Show More Authors

To damp the low-frequency oscillations which occurred due to the disturbances in the electrical power system, the generators are equipped with Power System Stabilizer (PSS) that provide supplementary feedback stabilizing signals. The low-frequency oscillations in power system are classified as local mode oscillations, intra-area mode oscillation, and interarea mode oscillations. A suitable PSS model was selected considering the low frequencies oscillation in the inter-area mode based on conventional PSS and Fuzzy Logic Controller. Two types of (FIS) Mamdani and suggeno were considered in this paper. The software of the methods was executed using MATLAB R2015a package.

 

 

View Publication Preview PDF
Crossref (5)
Crossref
Publication Date
Sat Oct 30 2021
Journal Name
Iraqi Journal Of Science
The Effects of Conductance on Metastable Switches in Memristive Devices Based on Anti-Hebbian and Hebbian (AHaH) Learning Rules
...Show More Authors

     In the last few years, the literature conferred a great interest in studying the feasibility of using memristive devices for computing. Memristive devices are important in structure, dynamics, as well as functionalities of artificial neural networks (ANNs) because of their resemblance to biological learning in synapses and neurons regarding switching characteristics of their resistance. Memristive architecture consists of a number of metastable switches (MSSs). Although the literature covered a variety of memristive applications for general purpose computations, the effect of low or high conductance of each MSS was unclear. This paper focuses on finding a potential criterion to calculate the conductance of each MMS rather t

... Show More
Scopus (1)
Scopus Crossref
Publication Date
Tue May 01 2018
Journal Name
2018 2nd Ieee Advanced Information Management,communicates,electronic And Automation Control Conference (imcec)
Hybrid Regressor and Approximation-Based Adaptive Control of Robotic Manipulators with Contact-Free Motion
...Show More Authors

View Publication
Scopus (17)
Crossref (11)
Scopus Crossref
Publication Date
Fri Jan 01 2021
Journal Name
Fme Transactions
FAT-based adaptive backstepping control of an electromechanical system with an unknown input coefficient
...Show More Authors

This paper is focused on orthogonal function approximation technique FAT-based adaptive backstepping control of a geared DC motor coupled with a rotational mechanical component. It is assumed that all parameters of the actuator are unknown including the torque-current constant (i.e., unknown input coefficient) and hence a control system with three motor control modes is proposed: 1) motor torque control mode, 2) motor current control mode, and 3) motor voltage control mode. The proposed control algorithm is a powerful tool to control a dynamic system with an unknown input coefficient. Each uncertain parameter/term is represented by a linear combination of weighting and orthogonal basis function vectors. Chebyshev polynomial is used

... Show More
View Publication
Scopus (6)
Crossref (7)
Scopus Clarivate Crossref
Publication Date
Tue Jul 09 2024
Journal Name
Diagnostics
A Novel Hybrid Machine Learning-Based System Using Deep Learning Techniques and Meta-Heuristic Algorithms for Various Medical Datatypes Classification
...Show More Authors

Medicine is one of the fields where the advancement of computer science is making significant progress. Some diseases require an immediate diagnosis in order to improve patient outcomes. The usage of computers in medicine improves precision and accelerates data processing and diagnosis. In order to categorize biological images, hybrid machine learning, a combination of various deep learning approaches, was utilized, and a meta-heuristic algorithm was provided in this research. In addition, two different medical datasets were introduced, one covering the magnetic resonance imaging (MRI) of brain tumors and the other dealing with chest X-rays (CXRs) of COVID-19. These datasets were introduced to the combination network that contained deep lea

... Show More
View Publication
Scopus (3)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Sat Sep 06 2025
Journal Name
International Journal Of Data And Network Science
Multi-objective of wind-driven optimization as feature selection and clustering to enhance text clustering
...Show More Authors

Text Clustering consists of grouping objects of similar categories. The initial centroids influence operation of the system with the potential to become trapped in local optima. The second issue pertains to the impact of a huge number of features on the determination of optimal initial centroids. The problem of dimensionality may be reduced by feature selection. Therefore, Wind Driven Optimization (WDO) was employed as Feature Selection to reduce the unimportant words from the text. In addition, the current study has integrated a novel clustering optimization technique called the WDO (Wasp Swarm Optimization) to effectively determine the most suitable initial centroids. The result showed the new meta-heuristic which is WDO was employed as t

... Show More
View Publication Preview PDF
Crossref (1)
Scopus Crossref
Publication Date
Sun Jan 08 2017
Journal Name
International Journal Of Information Technology And Computer Science
Adaptive Modeling of Urban Dynamics during Armada Event using CDRs
...Show More Authors

View Publication
Crossref
Publication Date
Fri Feb 28 2025
Journal Name
Journal Européen Des Systèmes Automatisés
Decision-Making Model for Aircraft Landing Based on Fuzzy Logic Approach
...Show More Authors

An aircraft's landing stage involves inherent hazards and problems associated with many factors, such as weather, runway conditions, pilot experiences, etc. The pilot is responsible for selecting the proper landing procedure based on information provided by the landing console operator (LCO). Given the likelihood of human decisions due to errors and biases, creating an intelligent system becomes important to predict accurate decisions. This paper proposes the fuzzy logic method, which intends to handle the uncertainty and ambiguity inherent in the landing phase, providing intelligent decision support to the pilot while reducing the workload of the LCO. The fuzzy system, built using the Mamdani approach in MATLAB software, considers critical

... Show More
View Publication
Scopus Crossref
Publication Date
Tue Jul 24 2018
Journal Name
Sensors
Adaptive Windowing Framework for Surface Electromyogram-Based Pattern Recognition System for Transradial Amputees
...Show More Authors

Electromyogram (EMG)-based Pattern Recognition (PR) systems for upper-limb prosthesis control provide promising ways to enable an intuitive control of the prostheses with multiple degrees of freedom and fast reaction times. However, the lack of robustness of the PR systems may limit their usability. In this paper, a novel adaptive time windowing framework is proposed to enhance the performance of the PR systems by focusing on their windowing and classification steps. The proposed framework estimates the output probabilities of each class and outputs a movement only if a decision with a probability above a certain threshold is achieved. Otherwise (i.e., all probability values are below the threshold), the window size of the EMG signa

... Show More
View Publication
Crossref (25)
Clarivate Crossref