Preferred Language
Articles
/
wBfvpo0BVTCNdQwCAReY
Automatic generation of fuzzy classification rules using granulation-based adaptive clustering
...Show More Authors

Scopus Crossref
View Publication
Publication Date
Tue Sep 01 2020
Journal Name
Al-khwarizmi Engineering Journal
UAV Control Based on Dual LQR and Fuzzy-PID Controller
...Show More Authors

This paper presents the design of a longitudinal controller for an autonomous unmanned aerial vehicle (UAV). This paper proposed the dual loop (inner-outer loop) control based on the intelligent algorithm. The inner feedback loop controller is a Linear Quadratic Regulator (LQR) to provide robust (adaptive) stability. In contrast, the outer loop controller is based on Fuzzy-PID (Proportional, Integral, and Derivative) algorithm to provide reference signal tracking. The proposed dual controller is to control the position (altitude) and velocity (airspeed) of an aircraft. An adaptive Unscented Kalman Filter (AUKF) is employed to track the reference signal and is decreased the Gaussian noise. The mathematical model of aircraft

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Mon Oct 22 2018
Journal Name
Journal Of Economics And Administrative Sciences
Using Mehar method to change fuzzy cost of fuzzy linear model with practical application
...Show More Authors

  Many production companies suffers from big losses because of  high production cost and low profits for several reasons, including raw materials high prices and no taxes impose on imported goods also consumer protection law deactivation and national product and customs law, so most of consumers buy imported goods because it is characterized by modern specifications and low prices.

  The production company also suffers from uncertainty in the cost, volume of production, sales, and availability of raw materials and workers number because they vary according to the seasons of the year.

  I had adopted in this research fuzzy linear program model with fuzzy figures

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Apr 01 2023
Journal Name
Baghdad Science Journal
Honeyword Generation Using a Proposed Discrete Salp Swarm Algorithm
...Show More Authors

Honeywords are fake passwords that serve as an accompaniment to the real password, which is called a “sugarword.” The honeyword system is an effective password cracking detection system designed to easily detect password cracking in order to improve the security of hashed passwords. For every user, the password file of the honeyword system will have one real hashed password accompanied by numerous fake hashed passwords. If an intruder steals the password file from the system and successfully cracks the passwords while attempting to log in to users’ accounts, the honeyword system will detect this attempt through the honeychecker. A honeychecker is an auxiliary server that distinguishes the real password from the fake passwords and t

... Show More
View Publication Preview PDF
Scopus (3)
Crossref (2)
Scopus Crossref
Publication Date
Sat Oct 03 2009
Journal Name
Proceeding Of 3rd Scientific Conference Of The College Of Science
Research Address: New Multispectral Image Classification Methods Based on Scatterplot Technique
...Show More Authors

Publication Date
Tue Dec 05 2023
Journal Name
Baghdad Science Journal
AlexNet-Based Feature Extraction for Cassava Classification: A Machine Learning Approach
...Show More Authors

Cassava, a significant crop in Africa, Asia, and South America, is a staple food for millions. However, classifying cassava species using conventional color, texture, and shape features is inefficient, as cassava leaves exhibit similarities across different types, including toxic and non-toxic varieties. This research aims to overcome the limitations of traditional classification methods by employing deep learning techniques with pre-trained AlexNet as the feature extractor to accurately classify four types of cassava: Gajah, Manggu, Kapok, and Beracun. The dataset was collected from local farms in Lamongan Indonesia. To collect images with agricultural research experts, the dataset consists of 1,400 images, and each type of cassava has

... Show More
View Publication Preview PDF
Scopus (2)
Scopus Crossref
Publication Date
Sun May 01 2016
Journal Name
2016 Al-sadeq International Conference On Multidisciplinary In It And Communication Science And Applications (aic-mitcsa)
Landsat-8 (OLI) classification method based on tasseled cap transformation features
...Show More Authors

View Publication
Scopus (4)
Crossref (3)
Scopus Crossref
Publication Date
Tue Dec 05 2023
Journal Name
Baghdad Science Journal
Indoor/Outdoor Deep Learning Based Image Classification for Object Recognition Applications
...Show More Authors

With the rapid development of smart devices, people's lives have become easier, especially for visually disabled or special-needs people. The new achievements in the fields of machine learning and deep learning let people identify and recognise the surrounding environment. In this study, the efficiency and high performance of deep learning architecture are used to build an image classification system in both indoor and outdoor environments. The proposed methodology starts with collecting two datasets (indoor and outdoor) from different separate datasets. In the second step, the collected dataset is split into training, validation, and test sets. The pre-trained GoogleNet and MobileNet-V2 models are trained using the indoor and outdoor se

... Show More
View Publication Preview PDF
Scopus (5)
Scopus Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Turkish Journal Of Physiotherapy And Rehabilitation
classification coco dataset using machine learning algorithms
...Show More Authors

In this paper, we used four classification methods to classify objects and compareamong these methods, these are K Nearest Neighbor's (KNN), Stochastic Gradient Descentlearning (SGD), Logistic Regression Algorithm(LR), and Multi-Layer Perceptron (MLP). Weused MCOCO dataset for classification and detection the objects, these dataset image wererandomly divided into training and testing datasets at a ratio of 7:3, respectively. In randomlyselect training and testing dataset images, converted the color images to the gray level, thenenhancement these gray images using the histogram equalization method, resize (20 x 20) fordataset image. Principal component analysis (PCA) was used for feature extraction, andfinally apply four classification metho

... Show More
Publication Date
Fri Jan 01 2021
Journal Name
Fme Transactions
FAT-based adaptive backstepping control of an electromechanical system with an unknown input coefficient
...Show More Authors

This paper is focused on orthogonal function approximation technique FAT-based adaptive backstepping control of a geared DC motor coupled with a rotational mechanical component. It is assumed that all parameters of the actuator are unknown including the torque-current constant (i.e., unknown input coefficient) and hence a control system with three motor control modes is proposed: 1) motor torque control mode, 2) motor current control mode, and 3) motor voltage control mode. The proposed control algorithm is a powerful tool to control a dynamic system with an unknown input coefficient. Each uncertain parameter/term is represented by a linear combination of weighting and orthogonal basis function vectors. Chebyshev polynomial is used

... Show More
View Publication
Scopus (6)
Crossref (7)
Scopus Clarivate Crossref
Publication Date
Tue May 01 2018
Journal Name
2018 2nd Ieee Advanced Information Management,communicates,electronic And Automation Control Conference (imcec)
Hybrid Regressor and Approximation-Based Adaptive Control of Robotic Manipulators with Contact-Free Motion
...Show More Authors

View Publication
Scopus (17)
Crossref (11)
Scopus Crossref