The aim of this paper is to approximate multidimensional functions f∈C(R^s) by developing a new type of Feedforward neural networks (FFNS) which we called it Greedy ridge function neural networks (GRGFNNS). Also, we introduce a modification to the greedy algorithm which is used to train the greedy ridge function neural networks. An error bound are introduced in Sobolov space. Finally, a comparison was made between the three algorithms (modified greedy algorithm, Backpropagation algorithm and the result in [1]).
Ziegler and Nichols proposed the well-known Ziegler-Nichols method to tune the coefficients of PID controller. This tuning method is simple and gives fixed values for the coefficients which make PID controller have weak adaptabilities for the model parameters variation and changing in operating conditions. In order to achieve adaptive controller, the Neural Network (NN) self-tuning PID control is proposed in this paper which combines conventional PID controller and Neural Network learning capabilities. The proportional, integral and derivative (KP, KI, KD) gains are self tuned on-line by the NN output which is obtained due to the error value on the desired output of the system under control. The conventio
... Show MoreThis paper is devoted to compare the performance of non-Bayesian estimators represented by the Maximum likelihood estimator of the scale parameter and reliability function of inverse Rayleigh distribution with Bayesian estimators obtained under two types of loss function specifically; the linear, exponential (LINEX) loss function and Entropy loss function, taking into consideration the informative and non-informative priors. The performance of such estimators assessed on the basis of mean square error (MSE) criterion. The Monte Carlo simulation experiments are conducted in order to obtain the required results.
In this paper, the class of meromorphic multivalent functions of the form by using fractional differ-integral operators is introduced. We get Coefficients estimates, radii of convexity and star likeness. Also closure theorems and distortion theorem for the class , is calculaed.
From a health standpoint, fluoride (F) is a vital element for humans. It had harmful effects on numerous organs when consumed in high dosages. Fluoride poisoning has been linked to liver damage. The purpose of this study was to see how sodium fluoride (Naf) affected liver function and the glycemic index in adult male albino rats. Fourteen (14) adult male Wistar albino rats were randomly and evenly divided into two groups and given the following treatments for thirty (30) days: G1 Group (Control group), were given distilled water and fed a balanced diet, G2 rats were administered water that contained 100 ppm Naf. The animals were fasted for 8-12 hours before being anesthetized and blood samples were taken by heart puncture technique
... Show MoreFrom a health standpoint, fluoride (F) is a vital element for humans. It had harmful effects on numerous organs when consumed in high dosages. Fluoride poisoning has been linked to liver damage. The purpose of this study was to see how sodium fluoride (Naf) affected liver function and the glycemic index in adult male albino rats. Fourteen (14) adult male Wistar albino rats were randomly and evenly divided into two groups and given the following treatments for thirty (30) days: G1 Group (Control group), were given distilled water and fed a balanced diet, G2 rats were administered water that contained 100 ppm Naf. The animals were fasted for 8-12 hours before being anesthetized and blood samples were taken by heart puncture technique
... Show MoreRecently, the phenomenon of the spread of fake news or misinformation in most fields has taken on a wide resonance in societies. Combating this phenomenon and detecting misleading information manually is rather boring, takes a long time, and impractical. It is therefore necessary to rely on the fields of artificial intelligence to solve this problem. As such, this study aims to use deep learning techniques to detect Arabic fake news based on Arabic dataset called the AraNews dataset. This dataset contains news articles covering multiple fields such as politics, economy, culture, sports and others. A Hybrid Deep Neural Network has been proposed to improve accuracy. This network focuses on the properties of both the Text-Convolution Neural
... Show MoreThe goal (purpose) from using development technology that require mathematical procedure related with high Quality & sufficiency of solving complex problem called Dynamic Programming with in recursive method (forward & backward) through finding series of associated decisions for reliability function of Pareto distribution estimator by using two approach Maximum likelihood & moment .to conclude optimal policy
The production function forms one of the techniques used in evaluation the production the process for any establishment or company, and to explain the importance of contribution of element from the independent variable and it's affect on the dependent variable. Then knowing the elements which are significant or non-significant on the dependent variable.
So the importance of this study come from estimating the Cobb-Douglas production function for Al- Mansoor General Company for Engineering industries in Iraq during the period (1989-2001)
To explain the importance which effects the independent variable such as
(N
Abstract
In this research provide theoretical aspects of one of the most important statistical distributions which it is Lomax, which has many applications in several areas, set of estimation methods was used(MLE,LSE,GWPM) and compare with (RRE) estimation method ,in order to find out best estimation method set of simulation experiment (36) with many replications in order to get mean square error and used it to make compare , simulation experiment contrast with (estimation method, sample size ,value of location and shape parameter) results show that estimation method effected by simulation experiment factors and ability of using other estimation methods such as(Shrinkage, jackknif
... Show MoreThe evolution in the field of Artificial Intelligent (AI) with its training algorithms make AI very important in different aspect of the life. The prediction problem of behavior of dynamical control system is one of the most important issue that the AI can be employed to solve it. In this paper, a Convolutional Multi-Spike Neural Network (CMSNN) is proposed as smart system to predict the response of nonlinear dynamical systems. The proposed structure mixed the advantages of Convolutional Neural Network (CNN) with Multi -Spike Neural Network (MSNN) to generate the smart structure. The CMSNN has the capability of training weights based on a proposed training algorithm. The simulation results demonstrated that the proposed
... Show More