The aim of this paper is to approximate multidimensional functions f∈C(R^s) by developing a new type of Feedforward neural networks (FFNS) which we called it Greedy ridge function neural networks (GRGFNNS). Also, we introduce a modification to the greedy algorithm which is used to train the greedy ridge function neural networks. An error bound are introduced in Sobolov space. Finally, a comparison was made between the three algorithms (modified greedy algorithm, Backpropagation algorithm and the result in [1]).
In this paper, RBF-based multistage auto-encoders are used to detect IDS attacks. RBF has numerous applications in various actual life settings. The planned technique involves a two-part multistage auto-encoder and RBF. The multistage auto-encoder is applied to select top and sensitive features from input data. The selected features from the multistage auto-encoder is wired as input to the RBF and the RBF is trained to categorize the input data into two labels: attack or no attack. The experiment was realized using MATLAB2018 on a dataset comprising 175,341 case, each of which involves 42 features and is authenticated using 82,332 case. The developed approach here has been applied for the first time, to the knowledge of the authors, to dete
... Show MoreThe prevalence of using the applications for the internet of things (IoT) in many human life fields such as economy, social life, and healthcare made IoT devices targets for many cyber-attacks. Besides, the resource limitation of IoT devices such as tiny battery power, small storage capacity, and low calculation speed made its security a big challenge for the researchers. Therefore, in this study, a new technique is proposed called intrusion detection system based on spike neural network and decision tree (IDS-SNNDT). In this method, the DT is used to select the optimal samples that will be hired as input to the SNN, while SNN utilized the non-leaky integrate neurons fire (NLIF) model in order to reduce latency and minimize devices
... Show MoreThe prevalence of using the applications for the internet of things (IoT) in many human life fields such as economy, social life, and healthcare made IoT devices targets for many cyber-attacks. Besides, the resource limitation of IoT devices such as tiny battery power, small storage capacity, and low calculation speed made its security a big challenge for the researchers. Therefore, in this study, a new technique is proposed called intrusion detection system based on spike neural network and decision tree (IDS-SNNDT). In this method, the DT is used to select the optimal samples that will be hired as input to the SNN, while SNN utilized the non-leaky integrate neurons fire (NLIF) model in order to reduce latency and minimize devices
... Show MoreThe research deals with the structures of the contemporary travelers' buildings in particular, and which is a functional complex installations where flexibility, technical and stereotypes play an important role as well as the human values These facilities must represent physiological and psychological comfort for travelers. TThose are facilities where architectural form plays a distinguished role in reversing the specialty and identity of the building. Hence the importance of the subject has been in forced, as a result for the need to study these facilities and to determine the impact and affects by the surrounding environment, to the extent of the urban, environmental, urban, social, and psychological levels. The importance of the resea
... Show MorePoverty phenomenon is very substantial topic that determines the future of societies and governments and the way that they deals with education, health and economy. Sometimes poverty takes multidimensional trends through education and health. The research aims at studying multidimensional poverty in Iraq by using panelized regression methods, to analyze Big Data sets from demographical surveys collected by the Central Statistical Organization in Iraq. We choose classical penalized regression method represented by The Ridge Regression, Moreover; we choose another penalized method which is the Smooth Integration of Counting and Absolute Deviation (SICA) to analyze Big Data sets related to the different poverty forms in Iraq. Euclidian Distanc
... Show MoreIn this paper, the Decomposition method was used to find approximation solutions for a system of linear Fredholm integral equations of the second kind. In this method the solution of a functional equations is considered as the sum of an infinite series usually converging to the solution, and Adomian decomposition method for solving linear and nonlinear integral equations. Finally, numerical examples are prepared to illustrate these considerations.
The objective of this work was to study the effect of oral administration of Cyperus esculentus (CE) and its alcoholic extract on sperm function parameters in prepubertal mice as a model for human .The animals were divided into three groups each contains 6 animals .Group 1 was treated with 150 mg/ kg body weight /day of crude CE, group 2 was treated with same dose of alcohol extract of CE and group 3 regarded as control throughout six weeks period. The results showed a significant (p> 0.05) increase in the mean of sperm concentration ,sperm motility percent and progressive sperm motility between treated groups and control . There was no differences among groups in the mean of sperm normal morphology and sperm viability . No significa
... Show MoreWe are used Bayes estimators for unknown scale parameter when shape Parameter is known of Erlang distribution. Assuming different informative priors for unknown scale parameter. We derived The posterior density with posterior mean and posterior variance using different informative priors for unknown scale parameter which are the inverse exponential distribution, the inverse chi-square distribution, the inverse Gamma distribution, and the standard Levy distribution as prior. And we derived Bayes estimators based on the general entropy loss function (GELF) is used the Simulation method to obtain the results. we generated different cases for the parameters of the Erlang model, for different sample sizes. The estimates have been comp
... Show MoreThe OpenStreetMap (OSM) project aims to establish a free geospatial database for the entire world which is editable by international volunteers. The OSM database contains a wide range of different types of geographical data and characteristics, including highways, buildings, and land use regions. The varying scientific backgrounds of the volunteers can affect the quality of the spatial data that is produced and shared on the internet as an OSM dataset. This study aims to compare the completeness and attribute accuracy of the OSM road networks with the data supplied by a digitizing process for areas in the Baghdad and Thi-Qar governorates. The analyses are primarily based on calculating the portion of the commission (extr
... Show More