Metal complexes of Mn(II), Co(II), Ni(II), Cu(II), Cd(II), Zn(II), Hg(II), Pd(II), and Pt(II) with Schiff base ligand (LH) derived from 2,5-dichloroaniline and 2-hydroxy-5-metheylbenzalaldehyde were synthesized and characterized using a variety of spectrophotometric techniques The findings of the spectroscopic analysis indicated that (LH) behaved as a binary coordinating agent to the metal ion by the N and O atoms, and the geometry shape of the complexes was octahedral, with the exception of the Pd and Pt complexes, which had a square planar geometry. Using the DPPH radical scavenging method, we investigated the antimicrobial activity of the compound against Staphylococcus aureus and Escherichia coli, as well as the antifungal activity of the compound against Candida albicans. In addition, the Schiff base ligand and its metal complexes were tested to determine their effectiveness as antioxidants. Antioxidant activities were demonstrated by the compounds, which worked to eliminate potentially damaging free radicals from the system.
A new series of Sulfamethoxazole derivatives was prepared and examined for antifibrinolytic and antimicrobial activities. Sulfamethoxazole derivatives bear heterocyclic moieties such as 1,3,4-thiadiazine {3}, pyrazolidine-3,5-diol {4} 6-hydroxy-1,3,4-thiadiazinane-2-thione {5} and [(3-methyl-5-oxo-4,5-dihydro-1H-pyrazol-4-yl)diazenyl] {8}. Their structures were elucidated by spectral methods (FT-IR, H1-NMR). Physical properties are also determined for all compound derivatives. Recently prepared compounds were tested for their antimicrobial activity in the laboratory. Each screened compound showed good tendency to moderate antimicrobial activity.
Schiff bases (SBs) represent multipurpose ligands that can be prepared from the concentration of prime amines with carbonyl clusters. Creation of SB transition metal compounds via as ligands has opportunity of attaining coordination complexes of abnormal arrangement and stability. These transition metal compounds have extraordinary attention as a consequence of their dynamic portion in metalloenzymes and as biomimetic prototypical complexes as a result of their proximity to usual enzymes and proteins. These complexes are imperative in medicinal disciplines owing to their widespread range of biological actions. They mostly exhibit organic actions involving antifungal, antibacterial, antitumor, antidiabetic, herbicidal, antiproliferative, ant
... Show MoreSchiff bases (SBs) represent multipurpose ligands that can be prepared from the concentration of prime amines with carbonyl clusters. Creation of SB transition metal compounds via as ligands has opportunity of attaining coordination complexes of abnormal arrangement and stability. These transition metal compounds have extraordinary attention as a consequence of their dynamic portion in metalloenzymes and as biomimetic prototypical complexes as a result of their proximity to usual enzymes and proteins. These complexes are imperative in medicinal disciplines owing to their widespread range of biological actions. They mostly exhibit organic actions involving antifungal, antibacterial, antitumor, antidiabetic, herbicidal, antiproliferative, ant
... Show MoreThis work involves the synthesis and characterization of asymmetrical pyromellitdiimide
derivatives [IV]a-f
by four sequence steps selective reaction . One mole of pyromellitic dianhydride
was reacted with one mole of various primary aromatic amines [ 4-nitro aniline , 4-chloro aniline , 4-toludine and 4-anisidine] in excess of dry acetone to produce six compounds (N-substituted-pyromellitamic monoacid) [I]a-f . These new compounds [I]a-d were converted to the corresponding
N- substituted- pyromellitmonoimide [II]a-d via their heating at (80-90)
0
C in sodium acetate-acetic
anhydride mixture .
The compounds [II]a-f
were allowed to react with one mole of another primary amines in
excess of dry acetone t
This work comprises the synthesis of 18 new N- substituted 5,10-
dihydrophenophosphazine.The diphenylamine was chosen as the starting material ,
which was reacted with phosphorus trichloride at elevated temperature (200-220)0C
for 6 hrs, followed by treating the reaction mixture with water to yield 5,10-
dihydrophenophosphazine-10-oxide(1), this was reacted with ethylchloroacetat to
obtain ethyl(5,10-dihydrophenophosphazine-10- oxide)acetate(2). Compound (2)
was converted to acid hydrazide by treating with hydrazine hydrate( 98% ) to obtain
5-(5,10-dihydrophenophosphazine) acetohydrazide-10-oxide (3). The acid hydrazid
was used to react with phenylisocyanat , phenylthioisocyanat to give (4,7)
respectively which
Diazotization reaction between 1-(2,4,6-Trihydroxy-phenyl)-ethanone and diazonium salts was carried out resulting in ligand 4-(3-Acetyl-2,4,6-trihydroxy-phenylazo)-N-(5-methyl-isoxazol-3-yl)-benzenesulfonamide, this in turn reacted with the next metal ions (V4+ , Cr3+ , Mn2+ and Cu2+) forming stable complexes with unique geometries such as (Octahedral for both Cr3+ , Mn2+ and Cu2+ ,squar pyramidal for V4+). The creation of such complexes was detected by employing spectroscopic means involving ultraviolet-visible which proved the obtained geometries, fourier transfer proved the formation of azo group and and the coordination with metal ion through it. Pyrolysis (TGA & DSC) studies proved the coordination of water residues with me
... Show MoreBackground: The isatin molecule is present in many natural substances, including plants and animals, and is used to prepare compounds with various biological activities. Objectives: To synthesize a new series of isatin derivatives with the expectation that they will have antimicrobial activity. Methods: Thiazole Schiff bases were synthesized from various Mannich bases of isatin to evaluate their antimicrobial properties. Initially, Mannich bases (2a–e) were synthesized by reacting isatin with formaldehyde and different secondary amines. Subsequently, they were treated with 2-aminothiazole to yield the final compounds (3a–e). Spectroscopic characterization was done via FT-IR and 1H-NMR. The antimicrobial screening was conducted o
... Show MoreGold nanoparticles (Au NPs) have been synthesized via reduction of sodium tetrachloroaurate dihydrate (NaAuCl4.2H2O) with 2-(2-methyl-5-amino -1H-imidazol-1-yl) ethanol (2-MAE) in presence and absence of ascorbic acid as reducing and stabilizing agents. The resulting Au NPs were characterized by UV–Vis spectroscopy, scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction (XRD), FT-IR spectroscopy. The absorption spectra of gold nanoparticles solutions in the uv-visible and near IR regions were studied at different amine concentrations and pH media.
Gold nanoparticles (Au NPs) have been synthesized via reduction of sodium tetrachloroaurate dihydrate (NaAuCl4.2H2O) with 2-(2-methyl-5-amino -1H-imidazol-1-yl) ethanol (2-MAE) in presence and absence of ascorbic acid as reducing and stabilizing agents. The resulting Au NPs were characterized by UV–Vis spectroscopy, scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction (XRD), FT-IR spectroscopy. The absorption spectra of gold nanoparticles solutions in the uv-visible and near IR regions were studied at different amine concentrations and pH media.
The researchers wanted to make a new azo imidazole as a follow-up to their previous work. The ligand 4-[(2-Amino-4-phenylazo)-methyl]-cyclohexane carboxylic acid as a derivative of trans-4-(aminomethyl) cyclohexane carboxylic acid diazonium salt, and synthesis a series of its chelate complexes with metalions, characterized these compounds using a variety technique, including elemental analysis, FTIR, LC-Mass, 1H-NMRand UV-Vis spectral process as well TGA, conductivity and magnetic quantifications. Analytical data showed that the Co (II) complex out to 1:1 metal-ligand ratio with square planner and tetrahedral geometry, respectively while 1:2 metal-ligand ratio in the Cu(II), Cr(III), Mn(II), Zn(II), Ru(III)and Rh(III)complexes
... Show More