After baking the flour, azodicarbonamide, an approved food additive, can be converted into carcinogenic semicarbazide hydrochloride (SEM) and biurea in flour products. Thus, determine SEM in commercial bread products is become mandatory and need to be performed. Therefore, two accurate, precision, simple and economics colorimetric methods have been developed for the visual detection and quantitative determination of SEM in commercial flour products. The 1st method is based on the formation of a blue-coloured product with λmax at 690 nm as a result of a reaction between the SEM and potassium ferrocyanide in an acidic medium (pH 6.0). In the 2nd method, a brownish-green colored product is formed due to the reaction between the SEM and phosphomolybdic acid (PMA) in a basic medium (pH 9.0). The resulting product absorbs light at λmax 750 nm. The colorimetric methods can be used either as sensors to detect the SEM by bare eye observation as little as 10 ppm and 2.0 ppm within 4−2 min or by spectrophotometry as the determination methods with linearity ranges 8.0−180 ppm and 0.5−30 ppm for the 1st and 2nd methods respectively. The developed methods were successfully applied to determine the SEM in the commercial bread products with a relative standard deviation (RSD) <3 %, <2 % and recovery of 94–103 %, 96–101 % for methods (1st and 2nd) respectively. The visual detection limits of the sensors can be used as a platform for SEM field-portable detection due to their lower limitations than the reported SEM in flour products, which opens the doors for on-site detection of SEM with instrument free.
In this study, we investigate about the estimation improvement for Autoregressive model of the third order, by using Levinson-Durbin Recurrence (LDR) and Weighted Least Squares Error ( WLSE ).By generating time series from AR(3) model when the error term for AR(3) is normally and Non normally distributed and when the error term has ARCH(q) model with order q=1,2.We used different samples sizes and the results are obtained by using simulation. In general, we concluded that the estimation improvement for Autoregressive model for both estimation methods (LDR&WLSE), would be by increasing sample size, for all distributions which are considered for the error term , except the lognormal distribution. Also we see that the estimation improve
... Show MoreThree cohesionless free flowing materials of different density were mixed in an air fluidized bed to study the mixing process by calculating performance of mixing index according to Rose equation (1959) and to study the effect of four variables (air velocity, mixing time, particle size of trace component and concentration of trace component) on the mixing index and as well as on mixing performance. It was found that mixing index increases with increasing the air velocity, mixing time and concentration of trace component until the optimum value. Mixing index depends on the magnitude of difference in particle size The first set of experiments (salt then sand then cast iron) give higher mixing index and better performance of mixing than the
... Show MoreTriticale is a hybrid of wheat and rye grown for use as animal feed. In Florida, due to its soft coat, triticale is highly vulnerable to Sitophilus oryzae L. (rice weevil) and there is interest in development of methods to detect early-instar larvae so that infestations can be targeted before they become economically damaging. The objective of this study was to develop prediction models of the infestation degree for triticale seed infested with rice weevils of different growth stages. Spectral signatures were tested as a method to detect rice weevils in triticale seed. Groups of seeds at 11 different levels (degrees) of infestation, 0–62%, were obtained by combining different ratios of infested and uninfested seeds. A spectrophotometer wa
... Show MoreThe present study was performed to evaluate the level of some risk factors (biochemical and immunological) in hypothyroid Iraqi patients considering the different thyroid functional states (hypothyroidism and subclinical hypothyroidism).The study includes 82 patients clinically diagnosed with hypothyroidism. Three study groups have been investigated: (47 clinical hypothyroid patients, 12 subclinical hypothyroid patients 23 healthy individuals) of different ages. This study, show that the proportion of females (83.3 %), (87.2%) in subclinical and clinical hypothyroidisim respectively higher than the proportion of males (16.7%),(12.8%) in subclinical and clinical hypothyrodism respectively of the total patients.The majority of subclinical hyp
... Show MoreThe target of this study was to study the natural phytochemical components of the head (capsule) of Cynara scolymus cultivated in Iraq. The head (capsule) of plant was extracted by maceration in70% ethanol for 72 hours, and fractioned by hexane, chloroform and ethyl acetate. Preliminary qualitative phytochemical screening was performed on the ethyl acetate fraction for capsule was revealed the presence of flavonoid and aromatic acids. These were examined by (high -performance liquid chromatography) (HPLC diodarray), (high- performance thin-layer chromatography)(HPTLC).
Flavonoids were isolated by preparative layer chromatography and aromatic acid was isolated by preparative high-
... Show MoreThe prevalence of using the applications for the internet of things (IoT) in many human life fields such as economy, social life, and healthcare made IoT devices targets for many cyber-attacks. Besides, the resource limitation of IoT devices such as tiny battery power, small storage capacity, and low calculation speed made its security a big challenge for the researchers. Therefore, in this study, a new technique is proposed called intrusion detection system based on spike neural network and decision tree (IDS-SNNDT). In this method, the DT is used to select the optimal samples that will be hired as input to the SNN, while SNN utilized the non-leaky integrate neurons fire (NLIF) model in order to reduce latency and minimize devices
... Show MoreThe prevalence of using the applications for the internet of things (IoT) in many human life fields such as economy, social life, and healthcare made IoT devices targets for many cyber-attacks. Besides, the resource limitation of IoT devices such as tiny battery power, small storage capacity, and low calculation speed made its security a big challenge for the researchers. Therefore, in this study, a new technique is proposed called intrusion detection system based on spike neural network and decision tree (IDS-SNNDT). In this method, the DT is used to select the optimal samples that will be hired as input to the SNN, while SNN utilized the non-leaky integrate neurons fire (NLIF) model in order to reduce latency and minimize devices
... Show Morethe study including isolation and identification of candida spp causing UTIs from patintes coming to al-yarmouk hospital