After baking the flour, azodicarbonamide, an approved food additive, can be converted into carcinogenic semicarbazide hydrochloride (SEM) and biurea in flour products. Thus, determine SEM in commercial bread products is become mandatory and need to be performed. Therefore, two accurate, precision, simple and economics colorimetric methods have been developed for the visual detection and quantitative determination of SEM in commercial flour products. The 1st method is based on the formation of a blue-coloured product with λmax at 690 nm as a result of a reaction between the SEM and potassium ferrocyanide in an acidic medium (pH 6.0). In the 2nd method, a brownish-green colored product is formed due to the reaction between the SEM and phosphomolybdic acid (PMA) in a basic medium (pH 9.0). The resulting product absorbs light at λmax 750 nm. The colorimetric methods can be used either as sensors to detect the SEM by bare eye observation as little as 10 ppm and 2.0 ppm within 4−2 min or by spectrophotometry as the determination methods with linearity ranges 8.0−180 ppm and 0.5−30 ppm for the 1st and 2nd methods respectively. The developed methods were successfully applied to determine the SEM in the commercial bread products with a relative standard deviation (RSD) <3 %, <2 % and recovery of 94–103 %, 96–101 % for methods (1st and 2nd) respectively. The visual detection limits of the sensors can be used as a platform for SEM field-portable detection due to their lower limitations than the reported SEM in flour products, which opens the doors for on-site detection of SEM with instrument free.
Classifying an overlapping object is one of the main challenges faced by researchers who work in object detection and recognition. Most of the available algorithms that have been developed are only able to classify or recognize objects which are either individually separated from each other or a single object in a scene(s), but not overlapping kitchen utensil objects. In this project, Faster R-CNN and YOLOv5 algorithms were proposed to detect and classify an overlapping object in a kitchen area. The YOLOv5 and Faster R-CNN were applied to overlapping objects where the filter or kernel that are expected to be able to separate the overlapping object in the dedicated layer of applying models. A kitchen utensil benchmark image database and
... Show MoreIn this work Nano crystalline (Cu2S) thin films pure and doped 3% Al with a thickness of 400±20 nm was precipitated by thermic steaming technicality on glass substrate beneath a vacuum of ~ 2 × 10− 6 mbar at R.T to survey the influence of doping and annealing after doping at 573 K for one hour on its structural, electrical and visual properties. Structural properties of these movies are attainment using X-ray variation (XRD) which showed Cu2S phase with polycrystalline in nature and forming hexagonal temple ,with the distinguish trend along the (220) grade, varying crystallites size from (42.1-62.06) nm after doping and annealing. AFM investigations of these films show that increase average grain size from 105.05 nm to 146.54 nm
... Show Moreيسعى البحث إلى الاهتمام بإحدى الوظائف المهمة في إدارة الموارد البشرية وهي تقويم الأداء التي تواجه مجموعة من الانتقادات والآراء السلبية، اذ ظهر في الأّونة الأخيرة أنموذج جديد يمكن إن يتجاوز تلك السلبيات وهو أنموذج التغذية العكسية المتعدد المصادر درجة .وقد حاول الباحثان توظيف هذا المفهوم في اثنتين من المنظمات العامة العراقية هما (دائرة كهرباء الوسط) التابعة لوزارة الكهرباء
و (دائرة الماء والمجاري) ال
The study aims to identify the effect of training with weight added to different parts of the body in improving the biomechanical variables of the last step and upgrading the high jump for young people, the research was applied to one of the elite high jumpers for young people, and video imaging and kinetic analysis were conducted to extract the variables under study, and then the jumper underwent For the proposed exercises by 3 training units per week for a period of (8) weeks, in which emphasis was placed on improving the rotational forces (moments) of these parts, and then the post-tests were conducted, and the researcher concluded that the exercises applied and the added weights for all parts of the body (leg, thigh, trunk, and arms) le
... Show MoreIn this paper, the goal of proposed method is to protect data against different types of attacks by unauthorized parties. The basic idea of proposed method is generating a private key from a specific features of digital color image such as color (Red, Green and Blue); the generating process of private key from colors of digital color image performed via the computing process of color frequencies for blue color of an image then computing the maximum frequency of blue color, multiplying it by its number and adding process will performed to produce a generated key. After that the private key is generated, must be converting it into the binary representation form. The generated key is extracted from blue color of keyed image then we selects a c
... Show MoreMachine learning has a significant advantage for many difficulties in the oil and gas industry, especially when it comes to resolving complex challenges in reservoir characterization. Permeability is one of the most difficult petrophysical parameters to predict using conventional logging techniques. Clarifications of the work flow methodology are presented alongside comprehensive models in this study. The purpose of this study is to provide a more robust technique for predicting permeability; previous studies on the Bazirgan field have attempted to do so, but their estimates have been vague, and the methods they give are obsolete and do not make any concessions to the real or rigid in order to solve the permeability computation. To
... Show MoreA hand gesture recognition system provides a robust and innovative solution to nonverbal communication through human–computer interaction. Deep learning models have excellent potential for usage in recognition applications. To overcome related issues, most previous studies have proposed new model architectures or have fine-tuned pre-trained models. Furthermore, these studies relied on one standard dataset for both training and testing. Thus, the accuracy of these studies is reasonable. Unlike these works, the current study investigates two deep learning models with intermediate layers to recognize static hand gesture images. Both models were tested on different datasets, adjusted to suit the dataset, and then trained under different m
... Show More