This work focuses on the use of biologically produced activated carbon for improving the physi-co-chemical properties of water samples obtained from the Tigris River. An eco-friendly and low-cost activated carbon was prepared from the Alhagi plant using potassium hydroxide (KOH) as an impregnation agent. The prepared activated carbon was characterised using Fourier-transform infrared spectroscopy to determine the functional groups that exist on the raw material (Alhagi plant) and Alhagi activated carbon (AAC). Scanning electron microscope–energy-dispersive X-ray spectroscope was also used to investigate the surface shape and the elements that compose the powder. Brunauer–Emmett–Teller surface area analysis was used to evaluate the specific surface area and pore size of the prepared AAC. This study investigated three influential variables: activation temperature, activation time and impregnation ratio (IR) (KOH: dried solid wt./wt.). Central composite design was used to determine the interactions between the influential vari-ables. Results show that an activation temperature of 650°C, activation time of 2.5 h and IR of 1:2.6 are optimal for activated carbon preparation. © 2023 Desalination Publications. All rights reserved.
The research seeks to find out the extent of the coverage of the Mosul press to the issues of psychological and social effects of the organization "IS" on the community of Mosul, by analyzing the content of the newspapers “Economic City” and “Mosul News”. As well as to stand at the types of psychological and social effects and their repercussions on the Mosul community including figures, statistics and evidence that were covered in the theoretical study of these topics.
This study is the first scientific diagnosis to reveal the size and types of psychological and social effects of the “ISIS” organization through what was monitored by the Mosul press. The study seeks to draw the attention of officials, decision-m
... Show MorePlantation of humic acid nanoparticles on the inert sand through simple impregnation to obtain the permeable reactive barrier (PRB) for treating of groundwater contaminated with copper and cadmium ions. The humic acid was extracted from sewage sludge which is byproduct of the wastewater treatment plant; so, this considers an application of sustainable development. Batch tests signified that the coated sand by humic acid (CSHA) had removal efficiencies exceeded 98 % at contact time, sorbent dosage, and initial pH of 1 h, 0.25 g/50 mL and 7, respectively for 10 mg/L initial concentration and 200 rpm agitation speed. Results proved that physicosorption was the predominant mechanism for metals-CSHA interaction because the sorption data followed
... Show MoreIn this work, a functional nanocomposite consisting of multi walled carbon nanotubes combined with nanoparticles of silver and Pomegranate peel extract (MWCNTs- SNPs -NPGPE) was successfully synthesized using ultra sonic technique. The nanocomposite has been characterized using Transmission electron microscope (TEM), XRD, Energy dispersive X-ray spectroscopy (EDS) UV-Vis and FTIR. The obtained results reveal that the MWCNTs-SNPs-NPGPE nanocomposite exhibits form of nanotubes with rough surfaces and containing black spots, which are the silver nanoparticles. The dimensions of this tube are 161 nm in length and 60 nm in width with nanoparticles of silver not exceeding 20 nm. The XRD pattern of the prepared MWCNTs-SNPs-NPGPE nanocomposite s
... Show MoreNovel bidentate Schiff bases having nitrogen-sulphur donor sequence was synthesized from condensation of racemate camphor, (R)-camphor and (S)-camphor with Methyl hydrazinecarbodithioate (SMDTC). Its metal complexes were also prepared through the reaction of these ligands with silver and bismuth salts. All complexes were characterized by elemental analyses and various physico-chemical techniques. These Schiff bases behaved as uninegatively charged bidentate ligands and coordinated to the metal ions via ?-nitrogen and thiolate sulphur atoms. The NS Schiff bases formed complexes of general formula, [M(NS)2] or [M(NS)2.H2O] where M is BiIII or AgI, the expected geometry is octahedral for Bi(III) complexes while Ag(I) is expected to oxidized t
... Show MoreThis study aimed to investigate the feasibility of treatment actual potato chips processing wastewater in a continuously operated dual chambers microbial fuel cell (MFC) inoculated with anaerobic sludge. The results demonstrated significant removal of COD and suspended solids of more than 99% associated with relatively high generation of current and power densities of 612.5 mW/m3 and 1750 mA/m3, respectively at 100 Ω external resistance.
The nonlinear refractive (NLR) index and third order susceptibility (X3) of carbon quantum dots (CQDs) have been studied using two laser wavelengths (473 and 532 nm). The z-scan technique was used to examine the nonlinearity. Results showed that all concentrations have negative NLR indices in the order of 10−10 cm2/W at two laser wavelengths. Moreover, the nonlinearity of CQDs was improved by increasing the concentration of CQDs. The highest value of third order susceptibility was found to be 3.32*10−8 (esu) for CQDs with a concentration of 70 mA at 473 nm wavelength.
Water samples were collected from output of water for Al-Wahda plant where located in al-karrada area in Baghdad city to study water contamination with bacteria, fungi and Algae. The study lasted one year started on August, 2016 to July,2017.Results were acquired according to two tests performed, the first is biological test included total coliform,E.coli, pseudomonas aeruginosa, total fungi, Diatom and non Diatom Algae and the second is physiochemical test included temperature, turbidity and residual chlorine. The results of bacteria were within the permitted specification in the Iraqi standards no. 14/2270 for the year 2015 except August was exceeded the permitted standard for total coliform, it was 1.1< cell/100 ml.Total Fungi, Dia
... Show MoreThe proper operation, and control of wastewater treatment plants, is receiving an increasing attention, because of the rising concern about environmental issues. In this research a mathematical model was developed to predict biochemical oxygen demand in the waste water discharged from Abu-Ghraib diary factory in Baghdad using Artificial Neural Network (ANN).In this study the best selection of the input data were selected from the recorded parameters of the wastewater from the factory. The ANN model developed was built up with the following parameters: Chemical oxygen demand, Dissolved oxygen, pH, Total dissolved solids, Total suspended solids, Sulphate, Phosphate, Chloride and Influent flow rate. The results indicated that the constructed A
... Show More