he Orthogonal Frequency Division Multiplexing is a promising technology for the Next Generation Networks. This technique was selected because of the flexibility for the various parameters, high spectral efficiency, and immunity to ISI. The OFDM technique suffers from significant digital signal processing, especially inside the Inverse/ Fast Fourier Transform IFFT/FFT. This part is used to perform the orthogonality/De-orthogonality between the subcarriers which the important part of the OFDM system. Therefore, it is important to understand the parameter effects on the increase or to decrease the FPGA power consumption for the IFFT/FFT. This thesis is focusing on the FPGA power consumption of the IFFT/FFT uses in the OFDM system. This research finds a various parameters effect on FPGA power of the IFFT/FFT. In addition, investigate the computer software used to measure and analyse the FPGA power consumption of OFDM transceivers, and selects the target hardware used in the computer software. The researched parameters include the number of bits used in calculating the phase factor precision; Cyclic Prefix length effected on IP core IFFT, Subcarrier modulation type, word length width, Real and Complex Value IFFT, IFFT length, and subcarriers sampling frequency. The real value IFFT is proposed in 1987 and implemented in this thesis. These parameters above are discussed by comparing the result between the Real and Complex value IFFT used inside the OFDM system.
CdS and CdS:Sn thin films were successfully deposited on glass
substrates by spray pyrolysis method. The films were grown at
substrate temperatures 300 C°. The effects of Sn concentration on the
structural and optical properties were studied.
The XRD profiles showed that the films are polycrystalline with
hexagonal structure grown preferentially along the (002) axis. The
optical studies exhibit direct allowed transition. Energy band gap
vary from 3.2 to 2.7 eV.
ZnO nanostructures were synthesized by hydrothermal method at different temperatures and growth times. The effect of increasing the temperature on structural and optical properties of ZnO were analyzed and discussed. The prepared ZnO nanostructures were characterized by X-ray diffraction (XRD), UV–Vis. absorption spectroscopy (UV–Vis.), Photoluminescence (PL), and scanning electron microscopy (SEM). In this work, hexagonal crystal structure prepared ZnO nanostructures was observed using X-ray diffraction (XRD) and the average crystallite size equal 14.7 and 23.8 nm for samples synthesized at growth time 7 and 8 hours respectively. A nanotubes-shaped surface morphology was found using scanning electron microscopy (SEM). The optic
... Show MoreRare earth elements (Cerium, Lanthanum and Neodymium) doped CdS thin films are prepared using the chemical Spray Pyrolysis Method with temperature 200 oC. The X-ray diffraction (XRD) analysis refers that pure CdS and CdS:Ce, CdS:La and CdS:Nd thin films showed the hexagonal crystalline phase. The crystallite size determined by the Debye-Scherrer equation and the range was (35.8– 23.76 nm), and it was confirmed by field emission scanning electron microscopy (FE-SEM). The pure and doped CdS shows a direct band gap (2.57 to 2.72 eV), which was obtained by transmittance. The room-temperature photoluminescence of pure and doped CdS shows large peak at 431 nm, and two small peaks at (530 and 610 nm). The Current – voltage measurement in da
... Show MoreZinc oxide (ZnO) nanoparticles were synthesized using a modified hydrothermal approach at different reaction temperatures and growth times. Moreover, a thorough morphological, structural and optical investigation was demonstrated using scanning electron microscopy (SEM), x-ray diffraction (XRD), ultra-violate visible light spectroscopy (UV-Vis.), and photoluminescence (PL) techniques. Notably, SEM analysis revealed the occurrence of nanorods-shaped surface morphology with a wide range of length and diameter. Meanwhile, a hexagonal crystal structure of the ZnO nanoparticles was perceived using XRD analysis and crystallite size ranging from 14.7 to 23.8 nm at 7 and 8 ℎ𝑟𝑠., respectively. The prepared ZnO samples showed good abso
... Show MoreThin filis have been prepared from the tin disulphide (SnS2 ), the pure and the doped with copper (SnS2:Cu) with a percentages (1,2,3,4)% by using ahemical spray pyrolysis techniqee on substrate of glass heated up to(603K)and sith thicknesses (0.7±0.02)?m ,after that the films were treated thermally with a low pressure (10-3mb) and at a temperature of (473K) for one hour. The influence of both doping with copper and the thermal treatment on some of the physical characteristics of the prepared films(structural and optical) was studied. The X-ray analysis showed that the prepared films were polycrystalline Hexagonal type. The optical study that included the absorptance and transmitance spectra in the weavelength range (300-900)nm
... Show MoreIn this study, the aqueous extract of (Typha domingensis Pers.) pollen grain (qurraid) to know its ability to manufacture silver nanoparticles. Qurraid is a semi-solid yellow food substance, sold in Basra markets and eaten by the local population. It is made from the pollen of the T. domingensis Pers. plant after being pressed and treated with water vapor. The Gas chromatography–mass spectrometry (GC-MS) reaction was done to identify the active compounds of qurraid aqueous extract. The ability of the aqueous extract of qurraid to manufacture silver nanoparticles was tested, and the construction of silver nanoparticles was inferred by the reaction mixture's color, which ranged from yellow to dark brown. The synthesi
... Show MoreThe optical detectors which had been used in medical applications, and especially in radioactive treatments, need to be modified studied for the effects of radiations on them. This study included preparation of the MnS thin films in a way that vacuum thermal evaporation process at room temperature 27°C with thickness (400+-10nm) nm and a sedimentation rate of 0.39nm/sec on glass floors. The thin films prepared as a detector and had to be treated with neutron irradiation to examine the results gained from this process. The results decay X-ray (XRD) showed that all the prepared thin films have a multi-crystalline structure with the dominance of the direction (111), the two samples were irradiated with a neutron irradiation source (241Am-9Be)
... Show More