Preferred Language
Articles
/
wBYRdIcBVTCNdQwCmktk
In-season potato yield prediction with active optical sensors
...Show More Authors

Crop yield prediction is a critical measurement, especially in the time when parts of the world are suffering from farming issues. Yield forecasting gives an alert regarding economic trading, food production monitoring, and global food security. This research was conducted to investigate whether active optical sensors could be utilized for potato (Solanum tuberosum L.) yield prediction at the mid.le of the growing season. Three potato cultivars (Russet Burbank, Superior, and Shepody) were planted and six rates of N (0, 56, 112, 168, 224, and 280 kg ha−1), ammonium sulfate, which was replaced by ammonium nitrate in the 2nd year, were applied on 11 sites in a randomized complete block design, with four replications. Normalized difference vegetation index (NDVI) and chlorophyll index (CI) measurements were obtained weekly from the active optical sensors, GreenSeeker (GS) and Crop Circle (CC). The 168 kg N ha−1 produced the maximum potato yield. Indices measurements obtained at the 16th and 20th leaf growth stages were significantly correlated with tuber yield. Multiple regression analysis (potato yield as a dependent variable and vegetation indices, NDVI and CI, as independent variables) could make a remarkable improvement to the accuracy of the prediction model and increase the determination coefficient. The exponential and linear models showed a better fit of the data. Soil organic matter content increased the yield significantly but did not affect the prediction models. The 18th and 20th leaf growth stages are the best time to use the sensors for yield prediction.

View Publication
Publication Date
Sun Apr 14 2024
Journal Name
Kufa Journal For Agricultural Sciences
Growth and production of three potato cultivars as affected by organic foliar nutrition
...Show More Authors

Publication Date
Sun Apr 28 2024
Journal Name
Iraqi Journal Of Agricultural Sciences
COMPARISON OF TWO TYPES OF SENSORS AND THEIR EFFECT ON SPRAY QUALITY PEAR TREES
...Show More Authors

This study was aimed to reduce the amount of the sprayed solution lost during trees spraying.  At the same time, the concentration of the sprayed solution on the target (tree or bush) must be ensured and to find the best combination of treatments. Two factors controls the spraying process: (i) spraying speed (1.2 km/h, 2.4 km/h, 3.6 km/h), and (ii) the type of sensor. The test results showed a significant loss reduction percentage. It reached (6.05%, 5.39% and 2.05%) at the speed (1.2 km/h, 2.4 km/h, 3.6 km/h), respectively. It was noticed that when the speed becomes higher the loss becomes less accordingly. The interaction between the 3.6 km/h speed and the type of Ultrasonic sensor led to a decrease in the percentage of the spray

... Show More
Scopus Crossref
Publication Date
Mon Jan 01 2024
Journal Name
مجلة ميسان للدراسات الأكاديمية
An Overview Of The Loquat's "Eriobotrya Japonica" Active Components
...Show More Authors

View Publication Preview PDF
Crossref
Publication Date
Sun Mar 30 2003
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Active Alumina Extraction from Iraqi Bauxite for Catalyst's Support
...Show More Authors

View Publication Preview PDF
Publication Date
Sat Dec 31 2022
Journal Name
Iraqi Journal Of Market Research And Consumer Protection
EFFECT OF NITROGEN FERTILIZERS ON GROWTH AND YIELD TRAITS OF MAIZE: EFFECT OF NITROGEN FERTILIZERS ON GROWTH AND YIELD TRAITS OF MAIZE
...Show More Authors

 

ABSTRACT

A field experiment was carried out in the fields of the college of agricultural engineering sciences, university of Baghdad during the fall season of 2021, in order to find out which of the cultivated genotypes of maize are efficient under nitrogen fertilization. The experiment was applied according to a RCBD (split plot design with three replications). The genotypes of experiment (Baghdad, 5018 and Sarah) and  supplying three levels of nitrogen fertilizer, which are N1 (100 kg/ha),  N2 (200 kg/ha) and N3  (300 kg/ha), the results of the statistical analysis are showed the superiority of the cultivar Sarah in the trait of number of days until 50% silking, chlorophyll

... Show More
View Publication Preview PDF
Publication Date
Sun Jan 01 2023
Journal Name
Reviews In Agricultural Science
Technological Advances in Soil Penetration Resistance Measurement and Prediction Algorithms
...Show More Authors

Soil compaction is one of the most harmful elements affecting soil structure, limiting plant growth and agricultural productivity. It is crucial to assess the degree of soil penetration resistance to discover solutions to the harmful consequences of compaction. In order to obtain the appropriate value, using soil cone penetration requires time and labor-intensive measurements. Currently, satellite technologies, electronic measurement control systems, and computer software help to measure soil penetration resistance quickly and easily within the precision agriculture applications approach. The quantitative relationships between soil properties and the factors affecting their diversity contribute to digital soil mapping. Digital soil maps use

... Show More
View Publication
Scopus (7)
Crossref (7)
Scopus Crossref
Publication Date
Wed Mar 01 2017
Journal Name
Neural Computing And Applications
The potential of nonparametric model in foundation bearing capacity prediction
...Show More Authors

View Publication
Scopus (12)
Crossref (9)
Scopus Clarivate Crossref
Publication Date
Fri Mar 01 2024
Journal Name
Iaes International Journal Of Artificial Intelligence (ij-ai)
Analyzing the behavior of different classification algorithms in diabetes prediction
...Show More Authors

<span lang="EN-US">Diabetes is one of the deadliest diseases in the world that can lead to stroke, blindness, organ failure, and amputation of lower limbs. Researches state that diabetes can be controlled if it is detected at an early stage. Scientists are becoming more interested in classification algorithms in diagnosing diseases. In this study, we have analyzed the performance of five classification algorithms namely naïve Bayes, support vector machine, multi layer perceptron artificial neural network, decision tree, and random forest using diabetes dataset that contains the information of 2000 female patients. Various metrics were applied in evaluating the performance of the classifiers such as precision, area under the c

... Show More
View Publication
Scopus (1)
Scopus Crossref
Publication Date
Thu Jun 01 2023
Journal Name
Ifip Advances In Information And Communication Technology
Rapid Thrombogenesis Prediction in Covid-19 Patients Using Machine Learning
...Show More Authors

Machine Learning (ML) algorithms are increasingly being utilized in the medical field to manage and diagnose diseases, leading to improved patient treatment and disease management. Several recent studies have found that Covid-19 patients have a higher incidence of blood clots, and understanding the pathological pathways that lead to blood clot formation (thrombogenesis) is critical. Current methods of reporting thrombogenesis-related fluid dynamic metrics for patient-specific anatomies are based on computational fluid dynamics (CFD) analysis, which can take weeks to months for a single patient. In this paper, we propose a ML-based method for rapid thrombogenesis prediction in the carotid artery of Covid-19 patients. Our proposed system aims

... Show More
View Publication
Scopus (2)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Sun Jan 01 2017
Journal Name
Iraqi Journal Of Agricultural Sciences
THE ROLE OF JASMONIC ACID AND POTASSIUM NITRATE ON IN VITRO PRODUCATION OF MICROTUBERS OF TWO POTATO CULTIVARS
...Show More Authors

Scopus (3)
Scopus