The use of external posttensioning technique for strengthening reinforced concrete girders has been considerably studied by many researchers worldwide. However, no available data are seen regarding strengthening full-scale composite prestressed concrete girders with external posttensioned technique under static and repeated loading. In this research, four full-scale composite prestressed I-shape girders of 16 m span were fabricated and tested under static and repeated loading up to failure. Accordingly, two girders were externally strengthened with posttensioned strands, while the other two girders were left without strengthening. The experimental tests include deflection, cracking load, ultimate strength and strains at midspan, and loading stages. Test results were compared with the design expressions mentioned in AASHTO LRFD specifications and ACI 318-2014 code. Also, a nonlinear analysis was conducted using the finite element method (FEM). The presented analysis models were verified by comparing the model results with test results. The general theme abstracted from both experimental tests and numerical analysis reflects that the performance and procedure of strengthening with external prestressing of girders were found to be effective in increasing the load carrying capacity of the strengthened girders.
This study focuses on the modeling of manufactured damper when used in steel buildings. The main aim of the manufactured dampers is to protect the steel buildings from the damaging effects that may result due to earthquakes by introducing an extra damping in addition to the traditional damping.
Only Pure Manufactured Dampers, has been considered in this study. Viscous modeling of damping is generally preferred in structural engineering as it leads to a linear model then it has been used during this study to simulate the behavior of the Pure Manufactured Damper.
After definition of structural parameters of a manufactured damper (its stiffness and its damping) it can be used as a structural element that can be added to a mathematica
In order to understand the effect of (length of pile / diameter of pile) ratio on the load carrying capacity and settlement reduction behavior of piled raft resting on loose sand, laboratory model tests were conducted on small-scale models. The parameters studied were the effect of pile length and the number of piles. The load settlement behavior obtained from the tests has been validated by using 3-D finite element in ABAQUS program, was adopted to understand the load carrying response of piled raft and settlement reduction. The results of experimental work show that the increase in (Lp/dp) ratio led to increase in load carrying capacity by piled raft from (19.75 to 29.35%), (14.18 to 28.87%) and (0 to 16.49%) , the maximum load carr
... Show MoreIn order to understand the effect of (length of pile / diameter of pile) ratio on the load carrying capacity and settlement reduction behavior of piled raft resting on loose sand, laboratory model tests were conducted on small-scale models. The parameters studied were the effect of pile length and the number of piles. The load settlement behavior obtained from the tests has been validated by using 3-D finite element in ABAQUS program, was adopted to understand the load carrying response of piled raft and settlement reduction. The results of experimental work show that the increase in (Lp/dp) ratio led to increase in load carrying capacity by piled raft from (19.75 to 29.35%), (14.18 to 28.87%) and (0 to 16.49%) , the maximum load carried
... Show MoreThe use of Near-Surface Mounted (NSM) Carbon-Fiber-Reinforced Polymer (CFRP) strips is an efficient technology for increasing flexural and shear strength or for repairing damaged Reinforced Concrete (RC) members. This strengthening method is a promising technology. However, the thin layer of concrete covering the NSM-CFRP strips is not adequate to resist heat effect when directly exposed to a fire or at a high temperature. There is clear evidence that the strength and stiffness of CFRPs severely deteriorate at high temperatures. Therefore, in terms of fire resistance, the NSM technique has a significant defect. Thus, it is very important to develop a set of efficient fire protection systems to overcome these disadvantages. This pape
... Show MoreIn the present work a theoretical analysis depending on the new higher order . element in shear deformation theory for simply supported cross-ply laminated plate is developed. The new displacement field of the middle surface expanded as a combination of exponential and trigonometric function of thickness coordinate with the transverse displacement taken to be constant through the thickness. The governing equations are derived using Hamilton’s principle and solved using Navier solution method to obtain the deflection and stresses under uniform sinusoidal load. The effect of many design parameters such as number of laminates, aspect ratio and thickness ratio on static behavior of the laminated composite plate has been studied. The
... Show MoreFatigue cracking is the most common distress in road pavement. It is mainly due to the increase in the number of load repetition of vehicles, particularly those with high axle loads, and to the environmental conditions. In this study, four-point bending beam fatigue testing has been used for control and modified mixture under various micro strain levels of (250 μƐ, 400 μƐ, and 750 μƐ) and 5HZ. The main objective of the study is to provide a comparative evaluation of pavement resistance to the phenomenon of fatigue cracking between modified asphalt concrete and conventional asphalt concrete mixes (under the influence of three percentage of Silica fumes 1%, 2%, 3% by the weight of asphalt content), and (chan
... Show MoreSoils encounter cyclic loading conditions in situ, for example during the earthquakes and in the construction sequences of pavements. Investigations on the local scale displacements of the soil grain and their failure patterns under the cyclic loading conditions are relatively scarce in the literature. In this study, the local displacement fields of a dense sand layer interacting with a rigid footing under the plane-strain condition are examined using both experiments and simulations. Three commonly used types of cyclic loading conditions were applied on the footing. Digital particle image velocimetry (DPIV) is used to measure the local scale displacement fields in the soil, and to understand the ev