Water covers more than 75% of the earth's surface in the form of the ocean. The ocean investigation is far-fetched because the underwater environment has distinct phenomenal activities. The expansion of human activities inside underwater environments includes environmental monitoring, offshore field exploration, tactical surveillance, scientific data collection, and port security. This led to increased demand for underwater application communication systems. Therefore, the researcher develops many methods for underwater VLC Visible Light Communications. The new technology of blue laser is a type of VLC that has benefits in the application of underwater communications. This research article investigated the benefits of underwater blue laser communication with recursive OFDM for different water types and discovered the effects of baud rate, bit error rate, and latency which affected several subcarriers of the recursive OFDM that have same characteristics but different environments. The design uses a Xilinx Kintex-7 FPGA evaluation board with high-speed analog daughter card ADC/DAC. It is connected to the terminal blue laser diode as a source of transmitting and receiving signals. There are different experiments doing to find the result and discuss the characteristics of blue lasers in underwater communication for different environments.
Thin films of BhSe3 have being deposited on glass substrates of
about 80 - 172 ± 14 nm thickness from an aqueous solution bath at temperature 293 K for period 0.5 to 6.0 hours using alchemical bath deposition method .
The films are characterized by X-ray diffraction, X-ray
florescent techniques and optical transmittance spectra measurements in the rang 350 - 400 nm at 293 K. And shows that as deposited films are amorphous and a transition to polycrystalline state has taken place after annealing them at 373 K, for 30 minutes, But they will be dan1aged
... Show MoreThe Hubble telescope is characterized by the accuracy of the image formed in it, as a result of the fact that the surrounding environment is free of optical pollutants. Such as atmospheric gases and dust, in addition to light pollution emanating from industrial and natural light sources on the earth's surface. The Hubble telescope has a relatively large objective lens that provides appropriate light to enter the telescope to get a good image. Because of the nature of astronomical observation, which requires sufficient light intensity emanating from celestial objects (galaxies, stars, planets, etc.). The Hubble telescope is classified as type of the Cassegrain reflecting telescopes, which gives it the advantage of eliminating chromat
... Show MoreA polycrystalline CdTe film has been prepared by thermal evaporation technique on glass substrate at substrate temperature 423 K with 1.0 m thicknesses. The film was heated at various annealing temperature under vacuum (Ta =473, 523 and K). Some of physical properties of prepared films such as structural and optical properties were investigated. The patterns of X-ray diffraction analysis showed that the structure of CdTe powder and all films were polycrystalline and consist of a mixture of cubic and hexagonal phases and preferred orientation at (111) direction.
The optical measurements showed that un annealed and annealed CdTe films had direct energy gap (Eg). The Eg increased with increasing Ta. The refractive index and the real p
Thin filis have been prepared from the tin disulphide (SnS2 ), the pure and the doped with copper (SnS2:Cu) with a percentages (1,2,3,4)% by using ahemical spray pyrolysis techniqee on substrate of glass heated up to(603K)and sith thicknesses (0.7±0.02)?m ,after that the films were treated thermally with a low pressure (10-3mb) and at a temperature of (473K) for one hour. The influence of both doping with copper and the thermal treatment on some of the physical characteristics of the prepared films(structural and optical) was studied. The X-ray analysis showed that the prepared films were polycrystalline Hexagonal type. The optical study that included the absorptance and transmitance spectra in the weavelength range (300-900)nm
... Show MoreThe aim of this research is to study the optical properties of carbon-magnesium plasma resulting from arc discharge with explosive wire technique, where the energy gap of each of carbon and magnesium and the carbon-magnesium bond for three values of the wire exploding current (50,75,100 amperes) was studied. It was found that the energy gap for each of carbon and magnesium decreases with increasing the current, the X-ray diffraction of magnesium and the carbon-magnesium suspension was studied, and FTIR of the carbon-magnesium suspended carbon was studied for three values of the exploding current (50, 75, 100 amperes) and the type of bonds for carbon and magnesium was determined. To ob
Thin films of pure tin mono-sulfide SnS with thicknesses of (0.85) μm were prepared by chemical spray pyrolysis technique and annealed for two hours with 673K.The effect of annealing on structural and optical properties for films prepared was studied. X-Ray diffraction analysis showed the polycrystalline with orthorhombic structure. It was found that annealing process increased the intensity of diffraction peaks. Optical properties of all samples were studied by recording the absorption and transmission  
... Show MoreZinc oxide (ZnO) nanoparticles were synthesized using a modified hydrothermal approach at different reaction temperatures and growth times. Moreover, a thorough morphological, structural and optical investigation was demonstrated using scanning electron microscopy (SEM), x-ray diffraction (XRD), ultra-violate visible light spectroscopy (UV-Vis.), and photoluminescence (PL) techniques. Notably, SEM analysis revealed the occurrence of nanorods-shaped surface morphology with a wide range of length and diameter. Meanwhile, a hexagonal crystal structure of the ZnO nanoparticles was perceived using XRD analysis and crystallite size ranging from 14.7 to 23.8 nm at 7 and 8 ℎ𝑟𝑠., respectively. The prepared ZnO samples showed good abso
... Show MoreZnO nanostructures were synthesized by hydrothermal method at different temperatures and growth times. The effect of increasing the temperature on structural and optical properties of ZnO were analyzed and discussed. The prepared ZnO nanostructures were characterized by X-ray diffraction (XRD), UV–Vis. absorption spectroscopy (UV–Vis.), Photoluminescence (PL), and scanning electron microscopy (SEM). In this work, hexagonal crystal structure prepared ZnO nanostructures was observed using X-ray diffraction (XRD) and the average crystallite size equal 14.7 and 23.8 nm for samples synthesized at growth time 7 and 8 hours respectively. A nanotubes-shaped surface morphology was found using scanning electron microscopy (SEM). The optic
... Show More