Water covers more than 75% of the earth's surface in the form of the ocean. The ocean investigation is far-fetched because the underwater environment has distinct phenomenal activities. The expansion of human activities inside underwater environments includes environmental monitoring, offshore field exploration, tactical surveillance, scientific data collection, and port security. This led to increased demand for underwater application communication systems. Therefore, the researcher develops many methods for underwater VLC Visible Light Communications. The new technology of blue laser is a type of VLC that has benefits in the application of underwater communications. This research article investigated the benefits of underwater blue laser communication with recursive OFDM for different water types and discovered the effects of baud rate, bit error rate, and latency which affected several subcarriers of the recursive OFDM that have same characteristics but different environments. The design uses a Xilinx Kintex-7 FPGA evaluation board with high-speed analog daughter card ADC/DAC. It is connected to the terminal blue laser diode as a source of transmitting and receiving signals. There are different experiments doing to find the result and discuss the characteristics of blue lasers in underwater communication for different environments.
In the literature, several correlations have been proposed for bubble size prediction in bubble columns. However these correlations fail to predict bubble diameter over a wide range of conditions. Based on a data bank of around 230 measurements collected from the open literature, a correlation for bubble sizes in the homogenous region in bubble columns was derived using Artificial Neural Network (ANN) modeling. The bubble diameter was found to be a function of six parameters: gas velocity, column diameter, diameter of orifice, liquid density, liquid viscosity and liquid surface tension. Statistical analysis showed that the proposed correlation has an Average Absolute Relative Error (AARE) of 7.3 % and correlation coefficient of 92.2%. A
... Show MorePorosity plays an essential role in petroleum engineering. It controls fluid storage in aquifers, connectivity of the pore structure control fluid flow through reservoir formations. To quantify the relationships between porosity, storage, transport and rock properties, however, the pore structure must be measured and quantitatively described. Porosity estimation of digital image utilizing image processing essential for the reservoir rock analysis since the sample 2D porosity briefly described. The regular procedure utilizes the binarization process, which uses the pixel value threshold to convert the color and grayscale images to binary images. The idea is to accommodate the blue regions entirely with pores and transform it to white in r
... Show MoreComputer vision seeks to mimic the human visual system and plays an essential role in artificial intelligence. It is based on different signal reprocessing techniques; therefore, developing efficient techniques becomes essential to achieving fast and reliable processing. Various signal preprocessing operations have been used for computer vision, including smoothing techniques, signal analyzing, resizing, sharpening, and enhancement, to reduce reluctant falsifications, segmentation, and image feature improvement. For example, to reduce the noise in a disturbed signal, smoothing kernels can be effectively used. This is achievedby convolving the distributed signal with smoothing kernels. In addition, orthogonal moments (OMs) are a cruc
... Show MoreCoal fines are highly prone to be generated in all stages of Coal Seam Gas (CSG) production and development. These detached fines tend to aggregate, contributing to pore throat blockage and permeability reduction. Thus, this work explores the dispersion stability of coal fines in CSG reservoirs and proposes a new additive to be used in the formulation of the hydraulic fracturing fluid to keep the fines dispersed in the fluid. In this work, bituminous coal fines were tested in various suspensions in order to study their dispersion stability. The aggregation behavior of coal fines (dispersed phase) was analyzed in different dispersion mediums, including deionized-water, low and high sodium chloride solutions. Furthermore, the effect of Sodium
... Show MoreWe consider the problem of calibrating range measurements of a Light Detection and Ranging (lidar) sensor that is dealing with the sensor nonlinearity and heteroskedastic, range-dependent, measurement error. We solved the calibration problem without using additional hardware, but rather exploiting assumptions on the environment surrounding the sensor during the calibration procedure. More specifically we consider the assumption of calibrating the sensor by placing it in an environment so that its measurements lie in a 2D plane that is parallel to the ground. Then, its measurements come from fixed objects that develop orthogonally w.r.t. the ground, so that they may be considered as fixed points in an inertial reference frame. Moreov
... Show MoreIn cognitive radio system, the spectrum sensing has a major challenge in needing a sensing method, which has a high detection capability with reduced complexity. In this paper, a low-cost hybrid spectrum sensing method with an optimized detection performance based on energy and cyclostationary detectors is proposed. The method is designed such that at high signal-to-noise ratio SNR values, energy detector is used alone to perform the detection. At low SNR values, cyclostationary detector with reduced complexity may be employed to support the accurate detection. The complexity reduction is done in two ways: through reducing the number of sensing samples used in the autocorrelation process in the time domain and through using the Slid
... Show MoreAbstract
The objective of image fusion is to merge multiple sources of images together in such a way that the final representation contains higher amount of useful information than any input one.. In this paper, a weighted average fusion method is proposed. It depends on using weights that are extracted from source images using counterlet transform. The extraction method is done by making the approximated transformed coefficients equal to zero, then taking the inverse counterlet transform to get the details of the images to be fused. The performance of the proposed algorithm has been verified on several grey scale and color test images, and compared with some present methods.
... Show MoreTerrestrial isopods play an important role in the biodegradation of many wastes which gives agreat importance in the nutrient cycles and ecosystem services , therefore this paper aims to use species
Diamond-like carbon, amorphous hydrogenated films forms of carbon, were pretreated from cyclohexane (C6H12) liquid using plasma jet which operates with alternating voltage 7.5kv and frequency 28kHz. The plasma Separates molecules of cyclohexane and Transform it into carbon nanoparticles. The effect of argon flow rate (0.5, 1 and 1.5 L/min) on the optical and chemical bonding properties of the films were investigated. These films were characterized by UV-Visible spectrophotometer, X-ray diffractometer (XRD) Raman spectroscopy and scanning electron microscopy (SEM). The main absorption appears around 296, 299 and 309nm at the three flow rate of argon gas. The value of the optical energy gap is 3.37, 3.55 and 3.68 eV at a different flow rate o
... Show More