Water covers more than 75% of the earth's surface in the form of the ocean. The ocean investigation is far-fetched because the underwater environment has distinct phenomenal activities. The expansion of human activities inside underwater environments includes environmental monitoring, offshore field exploration, tactical surveillance, scientific data collection, and port security. This led to increased demand for underwater application communication systems. Therefore, the researcher develops many methods for underwater VLC Visible Light Communications. The new technology of blue laser is a type of VLC that has benefits in the application of underwater communications. This research article investigated the benefits of underwater blue laser communication with recursive OFDM for different water types and discovered the effects of baud rate, bit error rate, and latency which affected several subcarriers of the recursive OFDM that have same characteristics but different environments. The design uses a Xilinx Kintex-7 FPGA evaluation board with high-speed analog daughter card ADC/DAC. It is connected to the terminal blue laser diode as a source of transmitting and receiving signals. There are different experiments doing to find the result and discuss the characteristics of blue lasers in underwater communication for different environments.
Tin oxide films (SnO2) of thickness (1 ?m) are prepared on glass substrate by post oxidation of metal films technique. Films were irradiated with Nd:YAG double frequency laser of wavelength (532 nm) pulses of three energies (100, 500, 1000) mJ. The optical absorption, transmission, reflectance, refractive index and optical conductivity of these films are investigated in the UV-Vis region (200-900) nm. It was found that the average transmittance of the films is around (80%) at wavelength (550 nm) and showed high transmission (? 90 %) in the visible and near infrared region. The absorption edge shifts towards higher energies, which is due to the Moss-Burstien effect and it lies at (4 eV). The optical band gap increased with increasing of ene
... Show MoreIn this paper, Zinc oxide were deposited on a glass substrate at room temperature (RT) and two annealing temperatures 350ºC and 500ºC using laser induced plasma technique. ZnO nanofilms of 200nm thickness have been deposited on glass substrate. X-RAY diffraction (XRD), atomic force microscopy and UV-visible spectrophotometer were used to analyze the results. XRD forms of ZnO nanostructure display hexagonal structure with three recognized peaks (100), (002), and (101) orientations at 500ºC annealing temperature. The optical properties of ZnO nanostructure were determined spectra. The energy gap was 3.1 eV at 300 oC and 3.25eV at 500ºC annealing temperature.
Liquid-crystalline organic semiconductors exhibit unique properties that make them highly interesting for organic optoelectronic applications. Their optical and electrical anisotropies and the possibility to control the alignment of the liquid-crystalline semiconductor allow not only to optimize charge carrier transport, but to tune the optical property of organic thin-film devices as well. In this study, the molecular orientation in a liquid-crystalline semiconductor film is tuned by a novel blading process as well as by different annealing protocols. The altered alignment is verified by cross-polarized optical microscopy and spectroscopic ellipsometry. It is shown that a change in alignment of the
Purpose: To validate a UV-visible spectrophotometric technique for evaluating niclosamide (NIC) concentration in different media across various values of pH. Methods: NIC was investigated using a UV-visible spectrophotometer in acidic buffer solution (ABS) of pH 1.2, deionized water (DW), and phosphate buffer solution (PBS), pH 7.4. The characterization of NIC was done with differential scanning calorimeter (DSC), powder X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). The UV analysis was validated for accuracy, precision, linearity, and robustness. Results: The DSC spectra showed a single endothermic peak at 228.43 °C (corresponding to the melting point of NIC), while XRD and FTIR analysis confirmed the identit
... Show MoreOptical Mark Recognition (OMR) is an important technology for applications that require speedy, high-accuracy processing of a huge volume of hand-filled forms. The aim of this technology is to reduce manual work, human effort, high accuracy in assessment, and minimize time for evaluation answer sheets. This paper proposed OMR by using Modify Bidirectional Associative Memory (MBAM), MBAM has two phases (learning and analysis phases), it will learn on the answer sheets that contain the correct answers by giving its own code that represents the number of correct answers, then detection marks from answer sheets by using analysis phase. This proposal will be able to detect no selection or select more than one choice, in addition, using M
... Show MoreThis paper proposed a theoretical treatment to study underwater wireless optical communications (UWOC) system with different modulation schemes by multiple input-multiple output (MIMO) technology in coastal water. MIMO technology provides high-speed data rates with longer distance link. This technique employed to assess the system by BER, Q. factor and data rate under coastal water types. The reliability of the system is examined by the techniques of 1Tx/1Rx, 2Tx/2Rx, 3Tx/3Rx and 4Tx/4Rx. The results shows the proposed technique by MIMO can get the better performance compared with the other techniques in terms of BER. Theoretical results were obtained to compare between PIN and APD
Abstract: Background: Staphylococcus aureus is Gram-positive bacteria that lives as a normal flora in living organisms but can be pathogenic to humans. Although a relatively unspectacular, nonmotile coccoid bacterium, S. aureus is a dangerous human pathogen in both community-acquired and nosocomial infections. Due to the increasing emergence of new strains of this antibiotic-resistant bacteria, it has become essential to approach different methods to control this pathogen. One of these methods is the antimicrobial photodynamic inactivation process using a low-level laser, in this paper, the Photodynamic effects of Rose Bengal and LLLL on the virulence factors of S.aureus were evaluated.
After the use of trust in God, and after the completion of my research called (the legislative miracle in the light of Surat), which studies the miracle in general and then unique legislative miracle, which was the largest share of the research where I built my research on several topics dealt with in the first topic: definition of miracles language and terminology and address Also discussed the Quran and the challenge and miracles and the status of the Arabs in the eloquence and eloquence, and then the literature in the miracle and dealt with legislation based on the foundations of individual education, family building, community building, and the most important advantages of Islamic legislation and presented some examples of legislativ
... Show MoreThe FSO technique depends on the compatibility of the optical path between the transmitter and the receiver (line-of-sight) to transmit data between two points. FSO system uses the light to provide optical Contact to send and receive various data. This study shows the design of a new optical system for the transmission of voice through free space at wavelengths (650,532,405) nm within point-point technology for specified distances. What distinguishes this work is the quality of the reflection-based modulation based on the Doppler phenomenon. Also, it is interested in studying the different attenuation conditions of the atmosphere at the wavelengths used, in addition to the attenuation caused by the
... Show MoreSeepage through earth dams is one of the most popular causes for earth dam collapse due to internal granule movement and seepage transfer. In earthen dams, the core plays a vital function in decreasing seepage through the dam body and lowering the phreatic line. In this research, an alternative soil to the clay soil used in the dam core has been proposed by conducting multiple experiments to test the permeability of silty and sandy soil with different additives materials. Then the selected sandy soil model was used to represent the dam experimentally, employing a permeability device to measure the amount of water that seeps through the dam's body and to represent the seepage line. A numerical model was adopted using Geo-Studio software i
... Show More