Water covers more than 75% of the earth's surface in the form of the ocean. The ocean investigation is far-fetched because the underwater environment has distinct phenomenal activities. The expansion of human activities inside underwater environments includes environmental monitoring, offshore field exploration, tactical surveillance, scientific data collection, and port security. This led to increased demand for underwater application communication systems. Therefore, the researcher develops many methods for underwater VLC Visible Light Communications. The new technology of blue laser is a type of VLC that has benefits in the application of underwater communications. This research article investigated the benefits of underwater blue laser communication with recursive OFDM for different water types and discovered the effects of baud rate, bit error rate, and latency which affected several subcarriers of the recursive OFDM that have same characteristics but different environments. The design uses a Xilinx Kintex-7 FPGA evaluation board with high-speed analog daughter card ADC/DAC. It is connected to the terminal blue laser diode as a source of transmitting and receiving signals. There are different experiments doing to find the result and discuss the characteristics of blue lasers in underwater communication for different environments.
In this research, an analysis for the standard Hueckel edge detection algorithm behaviour by using three dimensional representations for the edge goodness criterion is presents after applying it on a real high texture satellite image, where the edge goodness criterion is analysis statistically. The Hueckel edge detection algorithm showed a forward exponential relationship between the execution time with the used disk radius. Hueckel restrictions that mentioned in his papers are adopted in this research. A discussion for the resultant edge shape and malformation is presented, since this is the first practical study of applying Hueckel edge detection algorithm on a real high texture image containing ramp edges (satellite image).
Among the different passive techniques heat pipe heat exchanger (HPHE) seems to be the most effective one for energy saving in heating ventilation and air conditioning system (HVAC). The applications for nanofluids with high conductivity are favorable to increase the thermal performance in HPHE. Even though the nanofluid has the higher heat conduction coefficient that dispels more heat theoretically but the higher concentration will make clustering .Clustering is a problem that must be solved before nanofluids can be considered for long-term practical uses. Results showed that the maximum value of relative power is 0.13 mW at nanofluid compared with other concentrations due to the low density of nanofluid at this concentration. For highe
... Show MoreIn the present work theoretical relations are derived for the efficiency evaluation for the generation of the third and the fourth harmonics u$ing crystal cascading configuration. These relations can be applied to a wide class of nonlinear optical materials. Calculations are made for beta barium borate (BBO) crystal with ruby laser /.=694.3 nm . The case study involves producing the third harmonics at X. =231.4 nm of the fundamental beam. The formula of efficiency involves many parameters, which can be changed to enhance the efficiency. The results showed that the behavior of the efficiency is not linear with the crystal length. It is found that the efficiency increases when the input power increases. 'I'he walk-off length is calculated for
... Show MoreHueckel edge detector study using binary step edge image is presented. The standard algorithm that Hueckel presented, in his paper without any alteration is adopted. This paper studies a fully analysis for the algorithm efficiency, time consuming and the expected results with slide window size and edge direction. An analysis for its behavior with the changing of the slide window size (disk size) is presented. The best result is acquired when the window size equals to four pixel.
Transport is a problem and one of the most important mathematical methods that help in making the right decision for the transfer of goods from sources of supply to demand centers and the lowest possible costs, In this research, the mathematical model of the three-dimensional transport problem in which the transport of goods is not homogeneous was constructed. The simplex programming method was used to solve the problem of transporting the three food products (rice, oil, paste) from warehouses to the student areas in Baghdad, This model proved its efficiency in reducing the total transport costs of the three products. After the model was solved in (Winqsb) program, the results showed that the total cost of transportation is (269,
... Show MoreCadmium is one of the heavy metal found in the wastewater of many industries. The electrocoagulation offers many advantages for the removal of cadmium over other methods. So the removal of cadmium from wastewater by using electrocoagulation was studied to investigate the effect of operating parameters on the removal efficiency. The studied parameters were the initial pH, initial concentration, and applied voltage. The study experiments were conducted in a batch reactor with with two pairs of aluminum electrodes with dimension and 2mm in thick with 1.5 cm space between them. The optimum removal was obtained at pH =7, initial concentration = 50 mg/L, and applied voltage = 20 V and it was 90%.
The biosorption of Pb (II), Cd (II), and Hg (II) from simulated aqueous solutions using baker’s yeast biomass was investigated. Batch type experiments were carried out to find the equilibrium isotherm data for each component (single, binary, and ternary), and the adsorption rate constants. Kinetics pseudo-first and second order rate models applied to the adsorption data to estimate the rate constant for each solute, the results showed that the Cd (II), Pb (II), and Hg (II) uptake process followed the pseudo-second order rate model with (R2) 0.963, 0.979, and 0.960 respectively. The equilibrium isotherm data were fitted with five theoretical models. Langmuir model provides the best fitting for the experimental results with (R2) 0.992, 0
... Show MoreThis work focuses on the use of biologically produced activated carbon for improving the physi-co-chemical properties of water samples obtained from the Tigris River. An eco-friendly and low-cost activated carbon was prepared from the Alhagi plant using potassium hydroxide (KOH) as an impregnation agent. The prepared activated carbon was characterised using Fourier-transform infrared spectroscopy to determine the functional groups that exist on the raw material (Alhagi plant) and Alhagi activated carbon (AAC). Scanning electron microscope–energy-dispersive X-ray spectroscope was also used to investigate the surface shape and the elements that compose the powder. Brunauer–Emmett–Teller surface area analysis was used to evaluate the spe
... Show More