Water covers more than 75% of the earth's surface in the form of the ocean. The ocean investigation is far-fetched because the underwater environment has distinct phenomenal activities. The expansion of human activities inside underwater environments includes environmental monitoring, offshore field exploration, tactical surveillance, scientific data collection, and port security. This led to increased demand for underwater application communication systems. Therefore, the researcher develops many methods for underwater VLC Visible Light Communications. The new technology of blue laser is a type of VLC that has benefits in the application of underwater communications. This research article investigated the benefits of underwater blue laser communication with recursive OFDM for different water types and discovered the effects of baud rate, bit error rate, and latency which affected several subcarriers of the recursive OFDM that have same characteristics but different environments. The design uses a Xilinx Kintex-7 FPGA evaluation board with high-speed analog daughter card ADC/DAC. It is connected to the terminal blue laser diode as a source of transmitting and receiving signals. There are different experiments doing to find the result and discuss the characteristics of blue lasers in underwater communication for different environments.
Data security is an important component of data communication and transmission systems. Its main role is to keep sensitive information safe and integrated from the sender to the receiver. The proposed system aims to secure text messages through two security principles encryption and steganography. The system produced a novel method for encryption using graph theory properties; it formed a graph from a password to generate an encryption key as a weight matrix of that graph and invested the Least Significant Bit (LSB) method for hiding the encrypted message in a colored image within a green component. Practical experiments of (perceptibility, capacity, and robustness) were calculated using similarity measures like PSNR, MSE, and
... Show MoreThe application of ultrafiltration (UF) and nanofiltration (NF) processes in the handling of raw produced water have been investigated in the present study. Experiments of both ultrafiltration and nanofiltration processes are performed in a laboratory unit, which is operated in a cross-flow pattern. Various types of hollow fiber membranes were utilized in this study such as poly vinyl chloride (PVC) UF membrane, two different polyether sulfone (PES) NF membranes, and poly phenyl sulfone PPSU NF membrane. It was found that the turbidity of the treated water is higher than 95 % by using UF and NF membranes. The chemical oxygen demand COD (160 mg/l) and Oil content (26.8 mg/l) were found after treatment according to the allowable limits set
... Show MoreThe semiempirical (PM3) and DFT quantum mechanical methods were used to investigate the theoretical degradation of Indigo dye. The chemical reactivity of the Indigo dye was evaluated by comparing the potential energy stability of the mean bonds. Seven transition states were suggested and studied to estimate the actually starting step of the degradation reaction. The bond length and bond angle calculations indicate that the best active site in the Indigo dye molecule is at C10=C11. The most possible transition states are examined for all suggested paths of Indigo dye degradation predicated on zero-point energy and imaginary frequency. The first starting step of the reaction mechanism is proposed. The change in enthalpy, Gibbs free energ
... Show MoreVoice Activity Detection (VAD) is considered as an important pre-processing step in speech processing systems such as speech enhancement, speech recognition, gender and age identification. VAD helps in reducing the time required to process speech data and to improve final system accuracy by focusing the work on the voiced part of the speech. An automatic technique for VAD using Fuzzy-Neuro technique (FN-AVAD) is presented in this paper. The aim of this work is to alleviate the problem of choosing the best threshold value in traditional VAD methods and achieves automaticity by combining fuzzy clustering and machine learning techniques. Four features are extracted from each speech segment, which are short term energy, zero-crossing rate, auto
... Show MoreNurse scheduling problem is one of combinatorial optimization problems and it is one of NP-Hard problems which is difficult to be solved as optimal solution. In this paper, we had created an proposed algorithm which it is hybrid simulated annealing algorithm to solve nurse scheduling problem, developed the simulated annealing algorithm and Genetic algorithm. We can note that the proposed algorithm (Hybrid simulated Annealing Algorithm(GS-h)) is the best method among other methods which it is used in this paper because it satisfied minimum average of the total cost and maximum number of Solved , Best and Optimal problems. So we can note that the ratios of the optimal solution are 77% for the proposed algorithm(GS-h), 28.75% for Si
... Show MoreThe computer vision branch of the artificial intelligence field is concerned with developing algorithms for analyzing video image content. Extracting edge information, which is the essential process in most pictorial pattern recognition problems. A new method of edge detection technique has been introduces in this research, for detecting boundaries.
Selection of typical lossy techniques for encoding edge video images are also discussed in this research. The concentration is devoted to discuss the Block-Truncation coding technique and Discrete Cosine Transform (DCT) coding technique. In order to reduce the volume of pictorial data which one may need to store or transmit,
... Show MoreAfter the outbreak of COVID-19, immediately it converted from epidemic to pandemic. Radiologic images of CT and X-ray have been widely used to detect COVID-19 disease through observing infrahilar opacity in the lungs. Deep learning has gained popularity in diagnosing many health diseases including COVID-19 and its rapid spreading necessitates the adoption of deep learning in identifying COVID-19 cases. In this study, a deep learning model, based on some principles has been proposed for automatic detection of COVID-19 from X-ray images. The SimpNet architecture has been adopted in our study and trained with X-ray images. The model was evaluated on both binary (COVID-19 and No-findings) classification and multi-class (COVID-19, No-findings
... Show MorePavement crack and pothole identification are important tasks in transportation maintenance and road safety. This study offers a novel technique for automatic asphalt pavement crack and pothole detection which is based on image processing. Different types of cracks (transverse, longitudinal, alligator-type, and potholes) can be identified with such techniques. The goal of this research is to evaluate road surface damage by extracting cracks and potholes, categorizing them from images and videos, and comparing the manual and the automated methods. The proposed method was tested on 50 images. The results obtained from image processing showed that the proposed method can detect cracks and potholes and identify their severity levels wit
... Show More