Nowadays nanoparticles have widespread application in various industriesbecause of their special and unique features, there are many studies in sideeffects of nanomaterial. This study done by 40 white female mice withevery other day intraperitoneally injection of low and high doses of both ofZnO kg of body weight) and FeOnanoparticles (5 and 40 mg/kg). After a 15 days period, the mice weresacrificed and blood samples were collected for hormone analysis, andtissue samples for morphometric studies.Statistical Analysis shows significant differences in LH, Estrogen,Progesterone hormone levels between groups, while there are insignificantdifferences in Follicle stimulating hormone (FSH) level between thegroups compared with its level in the control group.The results also show that the highest level of LH reach 7.2 mIU/ml in thegroups treated with low dose of zinc oxide, the highest level of FSH reach4.58 mIU/ml in the groups treated with low dose of zinc oxide, the highestlevel of Estrogen hormone reach 69.5 ng/ml in the groups treated with lowof dose zinc oxide and the highest level of Progesterone reach 1.9 ng/ml inthe groups treated with high dose iron oxide. We conclude from the resultsthat the low doses of ZnO has benefits in increasing fertility through highlevel of reproductive hormones, while the high levels of nanoparticlesreduce fertility and there is a relation between FeO nanoparticles andprogesterone levels which may need more future studies.Morphometric study of the ovary show increase in Follicular stagesnumber range in the group treated with Low dose ZnO in compare with itsrange in the control groups. The lower range was belong to the grouptreated with the high dose of FeO. No significant differences has beenfound in the diameter mean of the different follicular phases between thegroup treated with low dose of ZnO NPs in compared with the controlgroup. High dose of ZnO NPs cause significant increase in the diametermean of Primordial follicles in compared with the control group. Low andhigh dose FeO NPs treated groups show significant reduction in thediameter mean of the different follicular phases in compared with thecontrol group.
In this paper had been studied the characterization of the nanocatalyst (NiO) Mesh electrodes. For fuel cell. The catalyst is prepared and also the electrodes The structural were studied through the analysis of X-ray diffraction of the prepared nanocatalyst for determining the yielding phase and atomic force microscope to identify the roughness of prepared catalyst surface, Use has been nanocatalyst led to optimization of cell voltage, current densities & power for a fuel cell.
Thin films of vanadium oxide nanoparticles doped with different concentrations of europium oxide (2, 4, 6, and 8) wt % are deposited on glass and Si substrates with orientation (111) utilizing by pulsed laser deposition technique using Nd:YAG laser that has a wavelength of 1064 nm, average frequency of 6 Hz and pulse duration of 10 ns. The films were annealed in air at 300 °C for two hours, then the structural, morphological and optical properties are characterized using x-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM) and UV-Vis spectroscopy respectively. The X-ray diffraction results of V2O5:Eu2O3 exhibit that the film has apolycrystalline monoclinic V2O5 and triclinic V4O7 phases. The FESEM image shows a h
... Show MoreA variety of oxides were examined as additives to a V2O5/Al2O3 catalyst in order to enhance the catalytic performance for the vapor phase oxidation of toluene to benzoic acid. It was found that the modification with MoO3 greatly promoted the little reaction leading to improve catalyst performance in terms of toluene conversion and benzoic acid selectivity. The effect of catalyst surface area, catalyst promoters, reaction temperature, O2/toluene, steam/toluene, space velocity, and catalyst composition to catalyst performance were examined in order to increase the benzoic acid selectivity and yield.
Background: Coronavirus, which causes respiratory illness, has been a public health issue in recent decades. Because the clinical symptoms of infection are not always specific, it is difficult to expose all suspects to qualitative testing in order to confirm or rule out infection as a test. Methods: According to the scientific studies and investigations, seventy-three results of scientific articles and research were obtained using PubMed, Medline, Research gate and Google Scholar. The research keywords used were COVID-19, coronavirus, blood parameters, and saliva. Results: This review provides a report on the changes in the blood and saliva tests of those who are infected with the COVID-19.COVID-19 is a systemic infection that has
... Show MorePure Cu (CZTSe) and Ag dopant CZTSe (CAZTSe) thin films with Ag content of 0.1 and 0.2 were fabricated on coring glass substrate at R.T with thickness of 800nm by thermal evaporation method. Comparison between the optical characteristics of pure Cu and Ag alloying thin films was done by measuring and analyzing the absorbance and transmittance spectra in the range of (400-1100)nm. Also, the effect of annealing temperature at 373K and 473K on these characteristics was studied. The results indicated that all films had high absorbance and low transmittance in visible region, and the direct bang gap of films decreases with increasing Ag content and annealing temperature. Optical parameters like extinction coefficientrefractive index, and
... Show MoreIn this research, Artificial Neural Networks (ANNs) technique was applied in an attempt to predict the water levels and some of the water quality parameters at Tigris River in Wasit Government for five different sites. These predictions are useful in the planning, management, evaluation of the water resources in the area. Spatial data along a river system or area at different locations in a catchment area usually have missing measurements, hence an accurate prediction. model to fill these missing values is essential.
The selected sites for water quality data prediction were Sewera, Numania , Kut u/s, Kut d/s, Garaf observation sites. In these five sites models were built for prediction of the water level and water quality parameters.
In this work various correlation methods were employed to investigate the annual cross-correlation patterns among three different ionospheric parameters: Optimum Working Frequency (OWF), Highest Probable Frequency (HPF), and Best Usable Frequency (BUF). The annual predicted dataset for these parameters were generated using VOCAP and ASASPS models based on the monthly Sunspot Numbers (SSN) during two years of solar cycle 24, minimum 2009 and maximum 2014. The investigation was conducted for Thirty-two different transmitter/receiver stations distributed over Middle East. The locations were selected based on the geodesic parameters which were calculated for different path lengths (500, 1000, 1500, and 2000) km and bearings (N, NE, E, S
... Show MoreIn this work, spinel ferrites (NiCoFe2O4) were prepared as thin films by dc reactive dual-magnetron co-sputtering technique. Effects of some operation parameters, such as inter-electrode distance, and preparation conditions such as mixing ratio of argon and oxygen in the gas mixture, on the structural and spectroscopic characteristics of the prepared samples were studied. For samples prepared at inter-electrode distance of 5 cm, only one functional group of OH- was observed in the FTIR spectra as all bands belonging to the metal-oxygen vibration were observed. Similarly, the XRD results showed that decreasing the pressure of oxygen in the gas mixture lead to grow more crystal planes in the samples prepare
... Show MoreThe present study is to investigate the possibility of using wastes in the form of scrap iron (ZVI) and/ or aluminum ZVAI for the detention and immobilization of the chromium ions in simulated wastewater. Different batch equilibrium parameters such as contact time (0-250) min, sorbent dose (2-8 g ZVI/100 mL and 0.2-1 g ZVAI/100 mL), initial pH (3-6), initial pollutant concentration of 50 mg/L, and speed of agitation (0-250) rpm were investigated. Maximum contaminant removal efficiency corresponding to (96 %) at 250 min contact time, 1g ZVAI/ 6g ZVI sorbent mass ratio, pH 5.5, pollutant concentration of 50 mg/L initially, and 250 rpm agitation speed were obtained.
The best isotherm model for the batch single Cr(III) uptake by ZVI
... Show More