Text Clustering consists of grouping objects of similar categories. The initial centroids influence operation of the system with the potential to become trapped in local optima. The second issue pertains to the impact of a huge number of features on the determination of optimal initial centroids. The problem of dimensionality may be reduced by feature selection. Therefore, Wind Driven Optimization (WDO) was employed as Feature Selection to reduce the unimportant words from the text. In addition, the current study has integrated a novel clustering optimization technique called the WDO (Wasp Swarm Optimization) to effectively determine the most suitable initial centroids. The result showed the new meta-heuristic which is WDO was employed as the multi-objective first time as unsupervised Feature Selection (WDOFS) and the second time as a Clustering algorithm (WDOC). For example, the WDOC outperformed Harmony Search and Particle Swarm in terms of F-measurement by 93.3%; in contrast, text clustering's performance improves 0.9% because of using suggested clustering on the proposed feature selection. With WDOFS more than 50 percent of features have been removed from the other examination of features. The best result got the multi-objectives with F-measurement 98.3%.
This study was aimed to investigate the response surface methodology (RSM) to evaluate the effects of various experimental conditions on the removal of levofloxacin (LVX) from the aqueous solution by means of electrocoagulation (EC) technique with stainless steel electrodes. The EC process was achieved successfully with the efficiency of LVX removal of 90%. The results obtained from the regression analysis, showed that the data of experiential are better fitted to the polynomial model of second-order with the predicted correlation coefficient (pred. R2) of 0.723, adjusted correlation coefficient (Adj. R2) of 0.907 and correlation coefficient values (R2) of 0.952. This shows that the predicted models and experimental values are in go
... Show MoreElectrical Discharge Machining (EDM) is a widespread Nontraditional Machining (NTM) processes for manufacturing of a complicated geometry or very hard metals parts that are difficult to machine by traditional machining operations. Electrical discharge machining is a material removal (MR) process characterized by using electrical discharge erosion. This paper discusses the optimal parameters of EDM on high-speed steel (HSS) AISI M2 as a workpiece using copper and brass as an electrode. The input parameters used for experimental work are current (10, 24 and 42 A), pulse on time (100, 150 and 200 µs), and pulse off time (4, 12 and 25 µs) that have effect on the material removal rate (MRR), electrode wear rate (EWR) and wear ratio (WR). A
... Show MoreThe present paper(Spacio-Temporal Relations in the Translated Text in Both Russian and Arabic) focuses on the spacio-temporal effect in the translated text; it is possible to compose the translation text simultaneously with the process of the composing the original text. This is carried out during the simultaneous consecutive translation. And, the time and place of composing the translation might greatly differ from the time and place of composing the original textt. The translator may tackle a text of an ancient time and written in a language which might have changed, and may thus appear as another language where the author might have talked on behalf of a people who had lived or are living in apparently different geographic
... Show MoreThe objective of the study was to develop microneedle (MN) patch, with suitable properties to ensure the delivery of a therapeutic level of lornoxicam (LXM) in a period suitable to replace parenteral administration in patients, especially those who fear needles. The used polymers were cold water-soluble polyvinyl alcohol (PVA) and polyvinylpyrrolidone (PVP) of low molecular weight with PEG 400 as plasticizer and Tween 80 (to enhance the release) using micro molding technique. Patches were studied for needle morphology, drug content, axial fracture force measurement and drug release while the optimized formulas were further subjected to pH measurement, folding endurance, ex vivo permeation study, histopathology study, stability study and
... Show MoreFelodipine is a calcium-channel blocker with low aqueous solubility and bioavailability. Lipid dosage forms are attractive delivery systems for such hydrophobic drug molecules. Nanoemulsion (NE) is one of the popular methods that has been used to solve the dispersibility problems of many drugs. Felodipine was formulated as a NE utilizing oleic acid as an oil phase, tween 80 and tween 60 as surfactants and ethanol as a co-surfactant. Eight formulas were prepared, and different tests were performed to ensure the stability of the NEs, such as particle size, polydispersity index, zeta potential, dilution test, drug content, viscosity and in-vitro drug release. Result
... Show MoreFerric oxide nanoparticles Fe3O4NPs have been prepared by the coprecipitation method, which were used to functionalize the surface of electrospun nanofibers of polyacrylonitrile to increase their effectiveness in adsorption of Congo red (CR) dye from their aqueous solutions. The effect factors of adsorption were systematically investigated such as adsorbent mass, initial concentration, contact time, temperature, ionic strength and pH. The maximum adsorbed amount of the dye was at 0.003g of adsorbent. The adsorption of dye increased with increasing initial dye concentration and the system reaches to the equilibrium state at 150 min. The adsorbed dye capacity decreases with increasing temperature which indicates to the exothermic nature of ad
... Show MoreDeep learning has recently received a lot of attention as a feasible solution to a variety of artificial intelligence difficulties. Convolutional neural networks (CNNs) outperform other deep learning architectures in the application of object identification and recognition when compared to other machine learning methods. Speech recognition, pattern analysis, and image identification, all benefit from deep neural networks. When performing image operations on noisy images, such as fog removal or low light enhancement, image processing methods such as filtering or image enhancement are required. The study shows the effect of using Multi-scale deep learning Context Aggregation Network CAN on Bilateral Filtering Approximation (BFA) for d
... Show More