Text Clustering consists of grouping objects of similar categories. The initial centroids influence operation of the system with the potential to become trapped in local optima. The second issue pertains to the impact of a huge number of features on the determination of optimal initial centroids. The problem of dimensionality may be reduced by feature selection. Therefore, Wind Driven Optimization (WDO) was employed as Feature Selection to reduce the unimportant words from the text. In addition, the current study has integrated a novel clustering optimization technique called the WDO (Wasp Swarm Optimization) to effectively determine the most suitable initial centroids. The result showed the new meta-heuristic which is WDO was employed as the multi-objective first time as unsupervised Feature Selection (WDOFS) and the second time as a Clustering algorithm (WDOC). For example, the WDOC outperformed Harmony Search and Particle Swarm in terms of F-measurement by 93.3%; in contrast, text clustering's performance improves 0.9% because of using suggested clustering on the proposed feature selection. With WDOFS more than 50 percent of features have been removed from the other examination of features. The best result got the multi-objectives with F-measurement 98.3%.
Estimating the semantic similarity between short texts plays an increasingly prominent role in many fields related to text mining and natural language processing applications, especially with the large increase in the volume of textual data that is produced daily. Traditional approaches for calculating the degree of similarity between two texts, based on the words they share, do not perform well with short texts because two similar texts may be written in different terms by employing synonyms. As a result, short texts should be semantically compared. In this paper, a semantic similarity measurement method between texts is presented which combines knowledge-based and corpus-based semantic information to build a semantic network that repre
... Show MoreHiding technique for dynamic encryption text using encoding table and symmetric encryption method (AES algorithm) is presented in this paper. The encoding table is generated dynamically from MSB of the cover image points that used as the first phase of encryption. The Harris corner point algorithm is applied on cover image to generate the corner points which are used to generate dynamic AES key to second phase of text encryption. The embedded process in the LSB for the image pixels except the Harris corner points for more robust. Experimental results have demonstrated that the proposed scheme have embedding quality, error-free text recovery, and high value in PSNR.
Scenes of love constitute a large space within the orbit of the movies, so that there is almost no film (no matter what kind) void of these scenes, as they are associated with many dimensions and they constitute a major attraction for viewers, and thus the direction solutions and their connection to the director's vision constitute a large part in the process of employing signs to highlight what should be highlighted or to refer to it symbolically on the grounds that the director does not have full freedom in the transfer of scenes of love at all levels as they are in reality. The research included three sections within the theoretical framework:The first section: the concept of image and its rhetorical importance. This section discussed
... Show MoreThe ideas and information obtained by the viewer in the cinema have always been the source of the visual image, but that doesn’t negate the fact that the mental image can produce a lot of the information and ideas in the cinematic art and the most important means to achieve this mental image in the film is the eloquent cinematic sound. This research is conducted to show this important and effective contribution of the sound in the production of the mental image. Hence the importance of this research is in that it addresses an important issue which is the eloquent performance of the sound and its role in the production of the mental image inside the space of the feature film. This research concerns those working the field of cinema and
... Show MoreImproved Merging Multi Convolutional Neural Networks Framework of Image Indexing and Retrieval