The concept of the active contour model has been extensively utilized in the segmentation and analysis of images. This technology has been effectively employed in identifying the contours in object recognition, computer graphics and vision, biomedical processing of images that is normal images or medical images such as Magnetic Resonance Images (MRI), X-rays, plus Ultrasound imaging. Three colleagues, Kass, Witkin and Terzopoulos developed this energy, lessening “Active Contour Models” (equally identified as Snake) back in 1987. Being curved in nature, snakes are characterized in an image field and are capable of being set in motion by external and internal forces within image data and the curve itself in that order. The present study proposes the use of a hybrid image segmentation technique to acquire precise segmentation outcomes, while engaging “Alpha Shape (α-Shape)” in supposition to derive the original contour, followed by a refining process through engaging a conventional active contour model. Empirical results show high potential in the suggested computational method. Trials indicate that the primary contour is capable of being precisely set next to the objective contour and effectively have these objective contours extracted, devoid of any contour instigation. Some of the benefits associated with the novel hybrid contour include minimized cost of computation, enhanced anti-jamming capability, as well as enlarged utilization array of snake model.
The rise of Industry 4.0 and smart manufacturing has highlighted the importance of utilizing intelligent manufacturing techniques, tools, and methods, including predictive maintenance. This feature allows for the early identification of potential issues with machinery, preventing them from reaching critical stages. This paper proposes an intelligent predictive maintenance system for industrial equipment monitoring. The system integrates Industrial IoT, MQTT messaging and machine learning algorithms. Vibration, current and temperature sensors collect real-time data from electrical motors which is analyzed using five ML models to detect anomalies and predict failures, enabling proactive maintenance. The MQTT protocol is used for efficient com
... Show MoreElectronic Health Record (EHR) systems are used as an efficient and effective method of exchanging patients’ health information with doctors and other key stakeholders in the health sector to obtain improved patient treatment decisions and diagnoses. As a result, questions regarding the security of sensitive user data are highlighted. To encourage people to move their sensitive health records to cloud networks, a secure authentication and access control mechanism that protects users’ data should be established. Furthermore, authentication and access control schemes are essential in the protection of health data, as numerous responsibilities exist to ensure security and privacy in a network. So, the main goal of our s
... Show MoreA dynamic analysis method has been developed to investigate and characterize embedded delamination on the dynamic response of composite laminated structures. A nonlinear finite element model for geometrically large amplitude free vibration intact plate and delamination plate analysis is presented using higher order shear deformation theory where the nonlinearity was introduced in the Green-Lagrange sense. The governing equation of the vibrated plate were derived using the Variational approach. The effect of different orthotropicity ratio, boundary condition and delamination size on the non-dimenational fundamental frequency and frequency ratios of plate for different stacking sequences are studied. Finally th
... Show MoreUsing orbit- motion limited theory, as the exact theory in calculating the ion and electron current in dusty plasma, the variations of charge number on a dust grain in Ar-plasma are studied by changing various charging parameters. Most of dependences of charge number on plasma parameters in this paper take into account the close packed effect.
The performance of sewage pumps stations affected by many factors through its work time which produce undesired transportation efficiency. This paper is focus on the use of artificial neural network and multiple linear regression (MLR) models for prediction the major sewage pump station in Baghdad city. The data used in this work were obtained from Al-Habibia sewage pump station during specified records- three years in Al-Karkh district, Baghdad. Pumping capability of the stations was recognized by considering the influent input importance of discharge, total suspended solids (TSS) and biological oxygen demand (BOD). In addition, the chemical oxygen demands (COD), pH and chloride (Cl). The proposed model performanc
... Show MoreThe aim of this paper is to find out the effects of the strategy of productive thinking upon the student’s achievement for the subject of research methodology in the College of Islamic Sciences. Achieving this objective, the researchers set the null hypotheses: (1) No difference is noticed to be statistically significant at the level of significance (0.05) among the student’s mean scores in the experimental group who were taught by the strategy of productive thinking, and the student’s mean scores in the control group who studied by the traditional method in the achievement test. (2) At level of sig. (0.05), there is no statistically significant difference in the mean of scores of the pre-tests and post ones in the achievement test of
... Show MoreThe aim of this paper is to find out the effects of the strategy of productive thinking upon the student’s achievement for the subject of research methodology in the College of Islamic Sciences. Achieving this objective, the researchers set the null hypotheses: (1) No difference is noticed to be statistically significant at the level of significance (0.05) among the student’s mean scores in the experimental group who were taught by the strategy of productive thinking, and the student’s mean scores in the control group who studied by the traditional method in the achievement test. (2) At level of sig. (0.05), there is no statistically significant difference in the mean of scores of the pre-tests and post ones in the achievement test of
... Show MoreSurvival analysis is one of the types of data analysis that describes the time period until the occurrence of an event of interest such as death or other events of importance in determining what will happen to the phenomenon studied. There may be more than one endpoint for the event, in which case it is called Competing risks. The purpose of this research is to apply the dynamic approach in the analysis of discrete survival time in order to estimate the effect of covariates over time, as well as modeling the nonlinear relationship between the covariates and the discrete hazard function through the use of the multinomial logistic model and the multivariate Cox model. For the purpose of conducting the estimation process for both the discrete
... Show More