The concept of the active contour model has been extensively utilized in the segmentation and analysis of images. This technology has been effectively employed in identifying the contours in object recognition, computer graphics and vision, biomedical processing of images that is normal images or medical images such as Magnetic Resonance Images (MRI), X-rays, plus Ultrasound imaging. Three colleagues, Kass, Witkin and Terzopoulos developed this energy, lessening “Active Contour Models” (equally identified as Snake) back in 1987. Being curved in nature, snakes are characterized in an image field and are capable of being set in motion by external and internal forces within image data and the curve itself in that order. The present study proposes the use of a hybrid image segmentation technique to acquire precise segmentation outcomes, while engaging “Alpha Shape (α-Shape)” in supposition to derive the original contour, followed by a refining process through engaging a conventional active contour model. Empirical results show high potential in the suggested computational method. Trials indicate that the primary contour is capable of being precisely set next to the objective contour and effectively have these objective contours extracted, devoid of any contour instigation. Some of the benefits associated with the novel hybrid contour include minimized cost of computation, enhanced anti-jamming capability, as well as enlarged utilization array of snake model.
Kidney tumors are of different types having different characteristics and also remain challenging in the field of biomedicine. It becomes very important to detect the tumor and classify it at the early stage so that appropriate treatment can be planned. Accurate estimation of kidney tumor volume is essential for clinical diagnoses and therapeutic decisions related to renal diseases. The main objective of this research is to use the Computer-Aided Diagnosis (CAD) algorithms to help the early detection of kidney tumors that addresses the challenges of accurate kidney tumor volume estimation caused by extensive variations in kidney shape, size and orientation across subjects.
In this paper, have tried to implement an automated segmentati
Like the digital watermark, which has been highlighted in previous studies, the quantum watermark aims to protect the copyright of any image and to validate its ownership using visible or invisible logos embedded in the cover image. In this paper, we propose a method to include an image logo in a cover image based on quantum fields, where a certain amount of texture is encapsulated to encode the logo image before it is included in the cover image. The method also involves transforming wavelets such as Haar base transformation and geometric transformation. These combination methods achieve a high degree of security and robustness for watermarking technology. The digital results obtained from the experiment show that the values of Peak Sig
... Show MoreStereolithography (SLA) has become an essential photocuring 3D printing process for producing parts of complex shapes from photosensitive resin exposed to UV light. The selection of the best printing parameters for good accuracy and surface quality can be further complicated by the geometric complexity of the models. This work introduces multiobjective optimization of SLA printing of 3D dental bridges based on simple CAD objects. The effect of the best combination of a low-cost resin 3D printer’s machine parameter settings, namely normal exposure time, bottom exposure time and bottom layers for less dimensional deviation and surface roughness, was studied. A multiobjective optimization method was utilized, combining the Taguchi me
... Show MoreThere are large numbers of weakness in the generated keys of security algorithms. This paper includes a new algorithm to generate key of 5120 bits for a new proposed cryptography algorithm for 10 rounds that combine neural networks and chaos theory (1D logistic map). Two methods of neural networks (NN) are employed as Adaline and Hopfield and the results are combined through several sequential operation. Carefully integrating high quality random number generators from neural networks and chaos theory to obtain suitable key for randomness and complexity.
The control of prostheses and their complexities is one of the greatest challenges limiting wide amputees’ use of upper limb prostheses. The main challenges include the difficulty of extracting signals for controlling the prostheses, limited number of degrees of freedom (DoF), and cost-prohibitive for complex controlling systems. In this study, a real-time hybrid control system, based on electromyography (EMG) and voice commands (VC) is designed to render the prosthesis more dexterous with the ability to accomplish amputee’s daily activities proficiently. The voice and EMG systems were combined in three proposed hybrid strategies, each strategy had different number of movements depending on the combination protocol between voic
... Show MoreIn this paper, an algorithm for reconstruction of a completely lost blocks using Modified
Hybrid Transform. The algorithms examined in this paper do not require a DC estimation
method or interpolation. The reconstruction achieved using matrix manipulation based on
Modified Hybrid transform. Also adopted in this paper smart matrix (Detection Matrix) to detect
the missing blocks for the purpose of rebuilding it. We further asses the performance of the
Modified Hybrid Transform in lost block reconstruction application. Also this paper discusses
the effect of using multiwavelet and 3D Radon in lost block reconstruction.
Multispectral remote sensing image segmentation can be achieved using a multithresholding technique. This paper studies the effect of changing the window size of the two dimensional (2D) fast Otsu algorithm that presented by Zhang. From the results, it shown that this method behaves as a search machine for the valleys (an automatic threshold), between the gray levels of the histogram with changing the size of slide window.
Keywords Image Segmentation, (2D) Fast Otsu method, Multithresholding, Automatic thresholding, (2D) histogram image.
This paper proposes and tests a computerized approach for constructing a 3D model of blood vessels from angiogram images. The approach is divided into two steps, image features extraction and solid model formation. In the first step, image morphological operations and post-processing techniques are used for extracting geometrical entities from the angiogram image. These entities are the middle curve and outer edges of the blood vessel, which are then passed to a computer-aided graphical system for the second phase of processing. The system has embedded programming capabilities and pre-programmed libraries for automating a sequence of events that are exploited to create a solid model of the blood vessel. The gradient of the middle c
... Show MoreThe past years have seen a rapid development in the area of image compression techniques, mainly due to the need of fast and efficient techniques for storage and transmission of data among individuals. Compression is the process of representing the data in a compact form rather than in its original or incompact form. In this paper, integer implementation of Arithmetic Coding (AC) and Discreet Cosine Transform (DCT) were applied to colored images. The DCT was applied using the YCbCr color model. The transformed image was then quantized with the standard quantization tables for luminance and chrominance. The quantized coefficients were scanned by zigzag scan and the output was encoded using AC. The results showed a decent compression ratio
... Show More