Preferred Language
Articles
/
vxcDUpEBVTCNdQwC1pRF
Energy Aware Scheme for Underwater Wireless Sensor Networks
...Show More Authors

The development of wireless sensor networks (WSNs) in the underwater environment leads to underwater WSN (UWSN). It has severe impact over the research field due to its extensive and real-time applications. However effective execution of underwater WSNs undergoes several problems. The main concern in the UWSN is sensor nodes’ energy depletion issue. Energy saving and maintaining quality of service (QoS) becomes highly essential for UWASN because of necessity of QoS application and confined sensor nodes (SNs). To overcome this problem, numerous prevailing methods like adaptive data forwarding techniques, QoS-based congestion control approaches, and various methods have been devised with maximum throughput and minimum network lifespan. This study introduces a novel Seeker Optimization based Energy Aware Clustering Scheme for Underwater Wireless Sensor Networks (SOEACS-UWN). The presented SOEACS-UWN model follows the operation on a collection of solutions named search population (i.e., human team) and considered optimization procedure as a searching process of optimum solutions via human teams. The SOEACS-UWN model constructs a fitness function for effectual CH choices using diverse variables namely distance, residual energy, node degree, centrality, and link quality. The simulation analysis of the SOEACS-UWN model is tested and the outcomes were investigated under diverse aspects. The experimental outcomes demonstrated the supremacy of the SOEACS-UWN model over other approaches.

Crossref
View Publication
Publication Date
Fri Mar 01 2024
Journal Name
Baghdad Science Journal
Deep Learning Techniques in the Cancer-Related Medical Domain: A Transfer Deep Learning Ensemble Model for Lung Cancer Prediction
...Show More Authors

Problem: Cancer is regarded as one of the world's deadliest diseases. Machine learning and its new branch (deep learning) algorithms can facilitate the way of dealing with cancer, especially in the field of cancer prevention and detection. Traditional ways of analyzing cancer data have their limits, and cancer data is growing quickly. This makes it possible for deep learning to move forward with its powerful abilities to analyze and process cancer data. Aims: In the current study, a deep-learning medical support system for the prediction of lung cancer is presented. Methods: The study uses three different deep learning models (EfficientNetB3, ResNet50 and ResNet101) with the transfer learning concept. The three models are trained using a

... Show More
View Publication Preview PDF
Scopus (11)
Crossref (7)
Scopus Crossref
Publication Date
Sat May 01 2021
Journal Name
Journal Of Physics: Conference Series
Pretreated Fishbone as Low Cost-Adsorbent for Cationic Dye Adsorption from Aqueous Solutions: Equilibrium, Optimization, Kinetic and Thermodynamic Study
...Show More Authors
Abstract<p>The present study investigated the use of pretreated fish bone (PTFB) as a new surface, natural waste and low-cost adsorbent for the adsorption of Methyl green (MG, as model toxic basic dye) from aqueous solutions. The functional groups and surface morphology of the untreated fish bone (FB) and pretreated fish bone were characterized using Fourier transform infrared (FTIR), scanning electron microscopy (SEM) and Energy dispersive X-ray spectroscopy (EDS), respectively. The effect of operating parameters including contact time, pH, adsorbent dose, temperature, and inorganic salt was evaluated. Langmuir, Freundlich and Temkin adsorption isotherm models were studied and the results showe</p> ... Show More
View Publication
Scopus (7)
Crossref (4)
Scopus Crossref
Publication Date
Mon Mar 01 2021
Journal Name
Microporous And Mesoporous Materials
Using the ash of common water reeds as a silica source for producing high purity ZSM-5 zeolite microspheres
...Show More Authors

View Publication
Scopus (38)
Crossref (32)
Scopus Clarivate Crossref
Publication Date
Wed Oct 29 2025
Journal Name
The Indonesian Biomedical Journal
Genotype Combination of rs1042044 and rs6458093 in GLP-1R as A Genetic Risk for Osteoporosis in Postmenopausal Iraqi Women
...Show More Authors

BACKGROUND: Many genetic factors are known to be related to osteoporosis, and currently the role of the glucagon-like peptide-1 receptor (GLP-1R) gene in bone health has been studied intensively. Some variation of this gene, such as rs1042044 and rs6458093, are known to be linked to metabolic diseases and lower bone mineral density, however their specific contribution to osteoporosis remains largely unexplored. Therefore, this study was conducted to investigate the combined genotypic effect of rs1042044 and rs6458093 as a genetic risk factor for osteoporosis in postmenopausal Iraqi women.METHODS: Blood samples from 75 osteoporosis patients and 75 healthy controls, aged 45-85, were collected. DNA was extracted, and a region of GLP-1R

... Show More
View Publication Preview PDF
Scopus Clarivate Crossref
Publication Date
Wed Jun 01 2022
Journal Name
Applied Energy
Novel mathematical modeling, performance analysis, and design charts for the typical hybrid photovoltaic/phase-change material (PV/PCM) system
...Show More Authors

Scopus (47)
Crossref (29)
Scopus Clarivate Crossref
Publication Date
Sun Mar 01 2015
Journal Name
Spectrochimica Acta Part A: Molecular And Biomolecular Spectroscopy
Effect of solvents on the extraction of natural pigments and adsorption onto TiO2 for dye-sensitized solar cell applications
...Show More Authors

View Publication
Scopus (127)
Crossref (119)
Scopus Clarivate Crossref
Publication Date
Sat Nov 19 2022
Journal Name
Journal Of Solid State Electrochemistry
Thermal, electrical and electrochemical properties of ionic liquid-doped poly(ethylene oxide)–LiTDI polymer electrolytes for Li-ion batteries
...Show More Authors

View Publication
Scopus (22)
Crossref (20)
Scopus Clarivate Crossref
Publication Date
Fri Dec 01 2023
Journal Name
Materials Today Sustainability
Structure and performance of polyvinylchloride microfiltration membranes improved by green silicon oxide nanoparticles for oil-in-water emulsion separation
...Show More Authors

View Publication
Scopus (27)
Crossref (9)
Scopus Clarivate Crossref
Publication Date
Mon Jun 01 2020
Journal Name
Journal Of Engineering
An An Accurate Estimation of Shear Wave Velocity Using Well Logging Data for Khasib Carbonate Reservoir - Amara Oil Field
...Show More Authors

   

Shear and compressional wave velocities, coupled with other petrophysical data, are vital in determining the dynamic modules magnitude in geomechanical studies and hydrocarbon reservoir characterization. But, due to field practices and high running cost, shear wave velocity may not available in all wells. In this paper, a statistical multivariate regression method is presented to predict the shear wave velocity for Khasib formation - Amara oil fields located in South- East of Iraq using well log compressional wave velocity, neutron porosity and density. The accuracy of the proposed correlation have been compared to other correlations. The results show that, the presented model provides accurate

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Aug 01 2024
Journal Name
Water Practice &amp; Technology
Artificial neural network and response surface methodology for modeling oil content in produced water from an Iraqi oil field
...Show More Authors
ABSTRACT<p>The majority of the environmental outputs from gas refineries are oily wastewater. This research reveals a novel combination of response surface methodology and artificial neural network to optimize and model oil content concentration in the oily wastewater. Response surface methodology based on central composite design shows a highly significant linear model with P value &lt;0.0001 and determination coefficient R2 equal to 0.747, R adjusted was 0.706, and R predicted 0.643. In addition from analysis of variance flow highly effective parameters from other and optimization results verification revealed minimum oily content with 8.5 ± 0.7 ppm when initial oil content 991 ppm, tempe</p> ... Show More
View Publication
Scopus (10)
Crossref (8)
Scopus Clarivate Crossref