The development of wireless sensor networks (WSNs) in the underwater environment leads to underwater WSN (UWSN). It has severe impact over the research field due to its extensive and real-time applications. However effective execution of underwater WSNs undergoes several problems. The main concern in the UWSN is sensor nodes’ energy depletion issue. Energy saving and maintaining quality of service (QoS) becomes highly essential for UWASN because of necessity of QoS application and confined sensor nodes (SNs). To overcome this problem, numerous prevailing methods like adaptive data forwarding techniques, QoS-based congestion control approaches, and various methods have been devised with maximum throughput and minimum network lifespan. This study introduces a novel Seeker Optimization based Energy Aware Clustering Scheme for Underwater Wireless Sensor Networks (SOEACS-UWN). The presented SOEACS-UWN model follows the operation on a collection of solutions named search population (i.e., human team) and considered optimization procedure as a searching process of optimum solutions via human teams. The SOEACS-UWN model constructs a fitness function for effectual CH choices using diverse variables namely distance, residual energy, node degree, centrality, and link quality. The simulation analysis of the SOEACS-UWN model is tested and the outcomes were investigated under diverse aspects. The experimental outcomes demonstrated the supremacy of the SOEACS-UWN model over other approaches.
<p>The demand for internet applications has increased rapidly. Providing quality of service (QoS) requirements for varied internet application is a challenging task. One important factor that is significantly affected on the QoS service is the transport layer. The transport layer provides end-to-end data transmission across a network. Currently, the most common transport protocols used by internet application are TCP (Transmission Control Protocol) and UDP (User Datagram Protocol). Also, there are recent transport protocols such as DCCP (data congestion control protocol), SCTP (stream congestion transmission protocol), and TFRC (TCP-friendly rate control), which are in the standardization process of Internet Engineering Task
... Show MoreEvolutionary algorithms are better than heuristic algorithms at finding protein complexes in protein-protein interaction networks (PPINs). Many of these algorithms depend on their standard frameworks, which are based on topology. Further, many of these algorithms have been exclusively examined on networks with only reliable interaction data. The main objective of this paper is to extend the design of the canonical and topological-based evolutionary algorithms suggested in the literature to cope with noisy PPINs. The design of the evolutionary algorithm is extended based on the functional domain of the proteins rather than on the topological domain of the PPIN. The gene ontology annotation in each molecular function, biological proce
... Show MoreThis work presents a novel technique for the detection of oil aging in electrical transformers using a single mode optical fiber sensor based on surface plasmon resonance (SPR). The aging of insulating oil is a critical issue in the maintenance and performance of electrical transformers, as it can lead to reduce insulation properties, increase risk of electrical breakdown, and decrease operational lifespan. Many parameters are calculated in this study in order to examine the efficiency of this sensor like sensitivity (S), signal to noise ratio (SNR), resolution (refractive index unit) and figure of merit (FOM) and the values are for figure of merit is 11.05, the signal to noise ratio is 20.3, the sensitivity is 6.63, and the resolution is 3
... Show MoreKey generation for data cryptography is vital in wireless communications security. This key must be generated in a random way so that can not be regenerated by a third party other than the intended receiver. The random nature of the wireless channel is utilized to generate the encryption key. However, the randomness of wireless channels deteriorated over time due to channel aging which casing security threats, particularly for spatially correlated channels. In this paper, the effect of channel aging on the ciphering key generations is addressed. A proposed method to randomize the encryption key each coherence time is developed which decreases the correlation between keys generated at consecutive coherence times. When compared to the
... Show MoreGas sensors are essential for detecting noxious gases that have a detrimental effect on people's health and welfare. Carbon quantum dots (CQDs) are the fundamental component of gas detectors. CQDs and graphene (Gr) were prepared using the electrochemical method. The gas sensitivity of these materials was evaluated at different temperatures (150, 200, 250 °C) to assess their effectiveness. Subsequently, experiments were conducted at different temperatures to ascertain that the combination of CQDs and Gr, with various percentages of Gr and CQDs, exhibited superior gas sensitization properties compared to CQDs alone. This was evaluated based on criteria such as sensitivity, recovery time, and reaction time. Interestingly, the combination was
... Show MoreThis project sought to fabricate a flexible gas sensor based on a short functionalized multi-walled carbon nanotubes (f-MWCNTs) network for nitrogen dioxide gas detection. The network was prepared by filtration from the suspension (FFS) method and modified by coating with a layer of polypyrrole conductive polymer (PPy) prepared by the oxidative chemical polymerization to improve the properties of the network. The structural, optical, and morphological properties of the f-MWCNTs and f-MWCNTs/PPy network were studied using X-ray diffraction (XRD), Fourie-transform infrared (FTIR), with an AFM (atomic force microscopy). XRD proved that the structure of f-MWCNTs is unaffected by the synthesis procedure. The FTIR spectra verified the existence o
... Show MoreThis research includes the use of an artificial intelligence algorithm, which is one of the algorithms of biological systems which is the algorithm of genetic regulatory networks (GRNs), which is a dynamic system for a group of variables representing space within time. To construct this biological system, we use (ODEs) and to analyze the stationarity of the model we use Euler's method. And through the factors that affect the process of gene expression in terms of inhibition and activation of the transcription process on DNA, we will use TF transcription factors. The current research aims to use the latest methods of the artificial intelligence algorithm. To apply Gene Regulation Networks (GRNs), we used a progr
... Show More