The development of wireless sensor networks (WSNs) in the underwater environment leads to underwater WSN (UWSN). It has severe impact over the research field due to its extensive and real-time applications. However effective execution of underwater WSNs undergoes several problems. The main concern in the UWSN is sensor nodes’ energy depletion issue. Energy saving and maintaining quality of service (QoS) becomes highly essential for UWASN because of necessity of QoS application and confined sensor nodes (SNs). To overcome this problem, numerous prevailing methods like adaptive data forwarding techniques, QoS-based congestion control approaches, and various methods have been devised with maximum throughput and minimum network lifespan. This study introduces a novel Seeker Optimization based Energy Aware Clustering Scheme for Underwater Wireless Sensor Networks (SOEACS-UWN). The presented SOEACS-UWN model follows the operation on a collection of solutions named search population (i.e., human team) and considered optimization procedure as a searching process of optimum solutions via human teams. The SOEACS-UWN model constructs a fitness function for effectual CH choices using diverse variables namely distance, residual energy, node degree, centrality, and link quality. The simulation analysis of the SOEACS-UWN model is tested and the outcomes were investigated under diverse aspects. The experimental outcomes demonstrated the supremacy of the SOEACS-UWN model over other approaches.
Acceptable Bit Error rate can be maintained by adapting some of the design parameters such as modulation, symbol rate, constellation size, and transmit power according to the channel state.
An estimate of HF propagation effects can be used to design an adaptive data transmission system over HF link. The proposed system combines the well known Automatic Link Establishment (ALE) together with variable rate transmission system. The standard ALE is modified to suite the required goal of selecting the best carrier frequency (channel) for a given transmission. This is based on measuring SINAD (Signal plus Noise plus Distortion to Noise plus Distortion), RSL (Received Signal Level), multipath phase distortion and BER (Bit Error Rate) fo
... Show MoreWe explore the transform coefficients of fractal and exploit new method to improve the compression capabilities of these schemes. In most of the standard encoder/ decoder systems the quantization/ de-quantization managed as a separate step, here we introduce new way (method) to work (managed) simultaneously. Additional compression is achieved by this method with high image quality as you will see later.
Exchange of information through the channels of communication can be unsafe. Communication media are not safe to send sensitive information so it is necessary to provide the protection of information from disclosure to unauthorized persons. This research presented the method to information security is done through information hiding into the cover image using a least significant bit (LSB) technique, where a text file is encrypted using a secret sharing scheme. Then, generating positions to hiding information in a random manner of cover image, which is difficult to predict hiding in the image-by-image analysis or statistical analyzes. Where it provides two levels of information security through encryption of a text file using the secret sha
... Show MoreThis work proposes a new video buffer framework (VBF) to acquire a favorable quality of experience (QoE) for video streaming in cellular networks. The proposed framework consists of three main parts: client selection algorithm, categorization method, and distribution mechanism. The client selection algorithm was named independent client selection algorithm (ICSA), which is proposed to select the best clients who have less interfering effects on video quality and recognize the clients’ urgency based on buffer occupancy level. In the categorization method, each frame in the video buffer is given a specific number for better estimation of the playout outage probability, so it can efficiently handle so many frames from different video
... Show MoreCOVID-19 affected the entire world due to the unavailability of the vaccine. The social distancing was a contributing factor that gave rise to the usage of Online Social Networks. It has been seen that people share the information that comes to them without verifying its source . One of the common forms of information that is disseminated that have a radical purpose is propaganda. Propaganda is organized and conscious method of molding conclusions and impacting an individual's contemplations to accomplish the ideal aim of proselytizer. For this paper, different propagandistic tweets were shared in the COVID-19 Era. Data regarding COVID-19 propaganda was extracted from Twitter. Labelling of data was performed manually using diffe
... Show MoreA network (or formally a graph) can be described by a set of nodes and a set of edges connecting these nodes. Networks model many real-world phenomena in various research domains, such as biology, engineering and sociology. Community mining is discovering the groups in a network where individuals group of membership are not explicitly given. Detecting natural divisions in such complex networks is proved to be extremely NP-hard problem that recently enjoyed a considerable interest. Among the proposed methods, the field of evolutionary algorithms (EAs) takes a remarkable interest. To this end, the aim of this paper is to present the general statement of community detection problem in social networks. Then, it visits the problem as an optim
... Show MoreThe aim of this paper is to approximate multidimensional functions f∈C(R^s) by developing a new type of Feedforward neural networks (FFNS) which we called it Greedy ridge function neural networks (GRGFNNS). Also, we introduce a modification to the greedy algorithm which is used to train the greedy ridge function neural networks. An error bound are introduced in Sobolov space. Finally, a comparison was made between the three algorithms (modified greedy algorithm, Backpropagation algorithm and the result in [1]).