The study aims to investigate the effect of Al2O3 and Al additions to Nickel-base superalloys as a coating layer on oxidation resistance, and structural behavior of nickel superalloys such as IN 738 LC. Nickel-base superalloys are popular as base materials for hot components in industrial gas turbines such as blades due to their superior mechanical performance and high-temperature oxidation resistance, but the combustion gases' existence generates hot oxidation at high temperatures for long durations of time, resulting in corrosion of turbine blades which lead to massive economic losses. Turbine blades used in Iraqi electrical gas power stations require costly maintenance using traditional processes regularly. These blades are made of nickel superalloys such as IN 738 LC(Inconel 738). Few scientists investigated the impact of Al2O3 or Al additions to Nickel-base superalloys as coating layer by using the slurry coating method on oxidation resistance to enhance the Nickel-base superalloy's oxidation resistance. In this study, IN 738 LC is coated with two different coating percentages, the first being (10 Al+90 Al2O3) and the second being (40 Al+60 Al2O3). Scanning Electron Microscope (SEM) and X-Ray Diffraction (XRD) were performed on all samples before and after oxidation. According to the results, SEM images of the surface revealed that the layer of the surface has a relatively moderated porosity value and that some of the coating layers contain micro-cracks. The best surface roughness of specimens coated with 60 % alumina+40 % aluminum was 5.752 nm. Whereas, the surface roughness of specimens coated with 90 % alumina+10 % aluminum was 6.367 nm.Results reveal that alloys with both Al2O3 and Al additions have reported a positive synergistic effect of the Al2O3and Al additions on oxidation resistance. Moreover,the NiCrAl2O3 thermal coating has good oxidation resistance and the effective temperature of anti-oxidation is raised to 1100 °C in turn reducing the maintenance period of turbine blades
Multipoint forming process is an engineering concept which means that the working surface of the punch and die is produced as hemispherical ends of individual active elements (called pins), where each pin can be independently, vertically displaced using a geometrically reconfigurable die. Several different products can be made without changing tools saved precious production time. Also, the manufacturing of very expensive rigid dies is reduced, and a lot of expenses are saved. But the most important aspects of using such types of equipment are the flexibility of the tooling. This paper presents an experimental investigation of the effect of three main parameters which are blank holder, rubber thickness and forming speed th
... Show MoreWet granulation method was used instead of conventional pan coating or fluidized –bed coating technique to prepare enteric-coated diclofenac sodium granules, using ethanolic solution of EudragitTM L100 as coating, binding and granulating agent .Addition of PEG400 or di-n-butyl phthalate as a plasticizer was found to improve the enteric property of the coat.
Part of the resulted granules was filled in hard gelatin capsules (size 0), while the other part was compressed into tablets with and without disintegrant.
The release profile of these two dosage forms in 0.1N HCl (pH 1.2)for 2 hours, and in phosphate buffer (pH 6.8) for 45 minutes as well as the release kinetic were compared with that of the en
... Show MoreSamples of gasoline engine oil (SAE 5W20) that had been exposed to various oxidation times were inspected with a UV-Visible (UV-Vis) spectrophotometer to select the best wavelengths and wavelength ranges for distinguishing oxidation times. Engine oil samples were subjected to different thermal oxidation periods of 0, 24, 48, 72, 96, 120, and 144 hours, resulting in a range of total base number (TBN) levels. Each wavelength (190.5 – 849.5 nm) and selected wavelength ranges were evaluated to determine the wavelength or wavelength ranges that could best distinguish among all oxidation times. The best wavelengths and wavelength ranges were analyzed with linear regression to determine the best wavelength or range to predict oxidation t
... Show MoreThe Corrosion protection effectiveness of Alimina(Al2O3,50nm)and Zinc oxide (ZnO,30nm) nanoparticales were studied on carbon steel and 316 stainless steel alloys in saline water (3.5%NaCl)at four temperatures: (20,30,40,50 OC)using three electrodes potentiostat. An average corrosion protection efficiencies of 65 %and 80% was achieved using Al2O3 NP's on carbon steel and stainless steel samples respectively, and it seems that no effect of rising temperature on the performances of the coated layers. While ZnO NP'S showed protection efficiency around 65% for the two alloys and little effected by temperature rising on the performanes of the coated layers. The morphology of the coated spesiemses was examined by Atomic force microscope.
The presence of antibiotic residues such as ciprofloxacin (CIPR) in an aqueous environment is dangerous when their concentrations exceed the allowable. Therefore, eliminating these residues from the wastewater becomes an essential issue to prevent their harm. In this work, the potential of efficient adsorption of ciprofloxacin antibiotics was studied using eco-friendly ZSM-5 nanocrystals‑carbon composite (NZC). An inexpensive effective natural binder made of the sucrose-citric acid mixture was used for preparing NZC. The characterization methods revealed the successful preparation of NZC with a favorable surface area of 103.739 m2/g, and unique morphology and functional groups. Investigating the ability of NZC for adsorbing CIPR antibioti
... Show MoreThis work deals with thermal cracking of slack wax produced as a byproduct from solvent dewaxing process of medium lubricating oil fraction in AL-Dura refinery. The thermal cracking process was carried out at a temperature ranges 480-540 ºC and atmospheric pressure. The liquid hourly space velocity (LHSV) for thermal cracking was varied between 1.0-2.5 . It was found that the conversion increased (61 - 83) with the increasing of reaction temperature (480 - 540) and decreased (83 - 63) with the increasing of liquid hourly space velocity (1.0 - 2.5).
The maximum gasoline yield obtained by thermal cracking process (48.52 wt. % of feed) was obtained at 500 ºC and liquid hour space velocity 1 . The obtaining liquid product at the best op
Background: The PMMA polymer denture base materials are low in thermal and strength properties. The aim of the study was to investigate the change in glass transition temperature, E-Moudulus and coefficient of thermal expansion of acrylic denture base material by addition of Al2O3, TiO2 and SiO2nano-fillers in 5% by weight. Materials and methods: The type of polymerization is free radical bulk polymerization. one hundred twenty (120) specimens were prepared , the specimens were divided into four groups according to the material had been added (one control and three for Al2O3, TiO2 and SiO2nanocomposite) each group was subdivided in to three groups according to the test had been done on it, the degree of transition (Tg) was measured by The d
... Show MoreIn the present work, Response Surface Methodology (RSM) was utilized to optimize process variables and find the best circumstances for indirect electrochemical oxidation of mimicked wastewater to remove phenol contaminants using prepared ternary composite electrode. The electrodeposition process is used for the synthesis of a ternary composite electrode of Mn, Co, and Ni oxides. The selected concentrations of metal salts of these elements were 0.05, 0.1, and 1.5 M, with constant molar ratio, current density, and electrolysis time of 1:1:1, 25 mA/cm2, and 2 h. Interestedly, the gathered Mn-Co-Ni oxides were deposited at both the anode and cathode. X-ray diffraction (XRD) and scanning electron microscopy (SEM) facilitated the qualitative char
... Show MoreMixing aluminum nitrate nonahydrate with urea produced room temperatures clear colorless ionic liquid with lowest freezing temperature at (1: 1.2) mole ratio respectively. Freezing point phase diagram was determined and density, viscosity and conductivity were measured at room temperature. It showed physical properties similar to other ionic liquids. FT-IR,UV-Vis, 1H NMR and 13C NMR were used to study the interaction between its species where - CO ??? Al- bond was suggested and basic ion [Al(NO3)4]? and acidic ions [Al(NO3)2. xU]+ were proposed. Water molecule believed to interact with both ions. Redox potential was determined to be about 2 Volt from – 0.6 to + 1.4 Volt with thermal stability up to 326 ?.