The study aims to investigate the effect of Al2O3 and Al additions to Nickel-base superalloys as a coating layer on oxidation resistance, and structural behavior of nickel superalloys such as IN 738 LC. Nickel-base superalloys are popular as base materials for hot components in industrial gas turbines such as blades due to their superior mechanical performance and high-temperature oxidation resistance, but the combustion gases' existence generates hot oxidation at high temperatures for long durations of time, resulting in corrosion of turbine blades which lead to massive economic losses. Turbine blades used in Iraqi electrical gas power stations require costly maintenance using traditional processes regularly. These blades are made of nickel superalloys such as IN 738 LC(Inconel 738). Few scientists investigated the impact of Al2O3 or Al additions to Nickel-base superalloys as coating layer by using the slurry coating method on oxidation resistance to enhance the Nickel-base superalloy's oxidation resistance. In this study, IN 738 LC is coated with two different coating percentages, the first being (10 Al+90 Al2O3) and the second being (40 Al+60 Al2O3). Scanning Electron Microscope (SEM) and X-Ray Diffraction (XRD) were performed on all samples before and after oxidation. According to the results, SEM images of the surface revealed that the layer of the surface has a relatively moderated porosity value and that some of the coating layers contain micro-cracks. The best surface roughness of specimens coated with 60 % alumina+40 % aluminum was 5.752 nm. Whereas, the surface roughness of specimens coated with 90 % alumina+10 % aluminum was 6.367 nm.Results reveal that alloys with both Al2O3 and Al additions have reported a positive synergistic effect of the Al2O3and Al additions on oxidation resistance. Moreover,the NiCrAl2O3 thermal coating has good oxidation resistance and the effective temperature of anti-oxidation is raised to 1100 °C in turn reducing the maintenance period of turbine blades
In this work preparation of antireflection coating with single layer of MgO using pulsed laser deposition (PLD) method which deposit on glass substrate with different thicknesses (90 and 100) nm annealed at temperature 500 K was done.
The optical and structural properties (X-ray diffraction) have been determined. The optical reflectance was computed with the aid of MATLAB over the visible and near infrared region. Results shows that the best result obtained for optical performance of AR'Cs at 700 shots with thickness 90 nm nanostructure single layer AR'Cs and low reflection at wavelength 550 nm.
Titanium alloy (Ti-6Al-4V or Gr.23) was widely used as a dental alloy. In the current study, polymerization of eugenol (PE) on Gr.23 titanium alloys was conducted by an electrochemical process before and after being treated by Micro Arc Oxidation (MAO). The formed films were characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD). The corrosion behavior of Gr.23 alloy in an artificial saliva environment at a temperature range of 293–323 K has been studied and assessed by means of electrochemical polarization and impedance spectroscopy techniques. Three cases are taken into consideration; bare Gr.23, Gr.23 coated by PE, and Gr.23 coated by PE after MAO treatment. The maxi
... Show MoreJava is a high-level , third generation programming language were introduced Javaoptics Open Source Physics (OSP) as a new simulation for design one of the most important interference optical coating called antireflection coating. It is recent developments in deign thin-film coatings. (OSP) shows multiple beam interferences from a parallel dielectric thin film and the evolution of reflection factors. It is simple to use and efficiently also can serve educational purposes. The obtained results have been compared with needle method
Kinetic and mechanism studies of the oxidation of oxalic acid by Cerium sulphate have been carried out in acid medium sulphuric acid. The uv- vis. Spectrophotometric technique was used to follow up the reaction and the selected wavelength to be followed was 320 nm. The kinetic study showed that the order of reaction is first order in Ce(IV) and fractional in oxalic acid. The effect of using different concentration of sulphuric acid on the rate of the reaction has been studied a and it was found that the rate decreased with increasing the acid concentration. Classical organic tests was used to identify the product of the oxidation reaction, the product was just bubbles of CO2.
Kinetic and mechanism studies of the oxidation of oxalic acid by Cerium sulphate have been carried out in acid medium sulphuric acid. The uv- vis. Spectrophotometric technique was used to follow up the reaction and the selected wavelength to be followed was 320 nm. The kinetic study showed that the order of reaction is first order in Ce(IV) and fractional in oxalic acid. The effect of using different concentration of sulphuric acid on the rate of the reaction has been studied a and it was found that the rate decreased with increasing the acid concentration. Classical organic tests was used to identify the product of the oxidation reaction, the product was just bubbles of CO2.
Electrocoagulation is an electrochemical method for treatment of different types of wastewater whereby sacrificial anodes corrode to release active coagulant (usually aluminium or iron cations) into solution, while simultaneous evolution of hydrogen at the cathode allows for pollutant removal by flotation or settling. The Taguchi method was applied as an experimental design and to determine the best conditions for chromium (VI) removal from wastewater. Various parameters in a batch stirred tank by iron metal electrodes: pH, initial chromium concentration, current density, distance between electrodes and KCl concentration were investigated, and the results have been analyzed using signal-to-noise (S/N) ratio. It was found that the r
... Show MoreA study on the treatment and reuse of oily wastewater generated from the process of fuel oil treatment of gas turbine power plant was performed. The feasibility of using hollow fiber ultrafiltration (UF) membrane and reverse osmosis (RO) membrane type polyamide thin-film composite in a pilot plant was investigated. Three different variables: pressure (0.5, 1, 1.5 and 2 bars), oil content (10, 20, 30 and 40 ppm), and temperature (15, 20, 30 and 40 ᵒC) were employed in the UF process while TDS was kept constant at 150 ppm. Four different variables: pressure (5, 6, 7 and 8 bar), oil content (2.5, 5, 7.5 and 10 ppm), total dissolved solids (TDS) (100, 200,300 and 400 ppm), and temperature (15, 20, 30 and 40 ᵒC) were mani
... Show MoreAn experimental analysis was included to study and investigate the mass transport behavior of cupric ions reduction as the main reaction in the presence of 0.5M H2SO4 by weight difference technique (WDT). The experiments were carried out by electrochemical cell with a rotating cylinder electrode as cathode. The impacts of different operating conditions on mass transfer coefficient were analyzed such as rotation speeds 100-500 rpm, electrolyte temperatures 30-60 , and cupric ions concentration 250-750 ppm. The order of copper reduction reaction was investigated and it shows a first order reaction behavior. The mass transfer coefficient for the described system was correlated with the aid of dimensionless groups as fo
... Show More