The prevalence of using the applications for the internet of things (IoT) in many human life fields such as economy, social life, and healthcare made IoT devices targets for many cyber-attacks. Besides, the resource limitation of IoT devices such as tiny battery power, small storage capacity, and low calculation speed made its security a big challenge for the researchers. Therefore, in this study, a new technique is proposed called intrusion detection system based on spike neural network and decision tree (IDS-SNNDT). In this method, the DT is used to select the optimal samples that will be hired as input to the SNN, while SNN utilized the non-leaky integrate neurons fire (NLIF) model in order to reduce latency and minimize devices’ power usage. Also, a rand order code (ROC) technique is used with SNN to detect cyber-attacks. The proposed method is evaluated by comparing its performance with two other methods: IDS-DNN and IDS-SNNTLF by using three performance metrics: detection accuracy, latency, and energy usage. The simulation results have shown that IDS-SNNDT attained low power usage and less latency in comparison with IDS-DNN and IDS-SNNTLF methods. Also, IDS-SNNDT has achieved high detection accuracy for cyber-attacks in contrast with IDS-SNNTLF.
Wireless channels are typically much more noisy than wired links and subjected to fading due to multipath propagation which result in ISI and hence high error rate. Adaptive modulation is a powerful technique to improve the tradeoff between spectral efficiency and Bit Error Rate (BER). In order to adjust the transmission rate, channel state information (CSI) is required at the transmitter side.
In this paper the performance enhancement of using linear prediction along with channel estimation to track the channel variations and adaptive modulation were examined. The simulation results shows that the channel estimation is sufficient for low Doppler frequency shifts (<30 Hz), while channel prediction is much more suited at
... Show MoreChannel estimation and synchronization are considered the most challenging issues in Orthogonal Frequency Division Multiplexing (OFDM) system. OFDM is highly affected by synchronization errors that cause reduction in subcarriers orthogonality, leading to significant performance degradation. The synchronization errors cause two issues: Symbol Time Offset (STO), which produces inter symbol interference (ISI) and Carrier Frequency Offset (CFO), which results in inter carrier interference (ICI). The aim of the research is to simulate Comb type pilot based channel estimation for OFDM system showing the effect of pilot numbers on the channel estimation performance and propose a modified estimation method for STO with less numb
... Show MoreIn this paper, a method is proposed to increase the compression ratio for the color images by
dividing the image into non-overlapping blocks and applying different compression ratio for these
blocks depending on the importance information of the block. In the region that contain important
information the compression ratio is reduced to prevent loss of the information, while in the
smoothness region which has not important information, high compression ratio is used .The
proposed method shows better results when compared with classical methods(wavelet and DCT).
The aim of this study was to measure the effectiveness of a proposed program to develop the creative abilities of the students of Tabuk University and its impact on the creative output of the NEOM project. The sample of the study consisted of (50) university students divided into two groups: an experimental group of 25 students who receive the proposed training program, and control group of (25) students.
To achieve these objectives, the researcher designed and developed tools to collect the required data, which were verified their validity and reliability.
The descriptive statistics of mean, standard deviations, correlation coefficient, T test for the associated sample were used in the analysis of the results of th
... Show MoreThe research aimed to demonstrate the possibility of benefiting from the coordination between real estate and income tax as the independent variable on the tax outcome as the dependent variable as the dependent variable. Which were practiced within rented buildings, as information was obtained from real estate owners, and the annual controls for the year 2021 were relied upon in the process of calculating the tax amounts expected to be obtained. used in the tax inventory process lacks seriousness and continuous updating
The gravity anomalies of the Jurassic and deep structures were obtained by stripping the gravity effect of Cretaceous and Tertiary formations from the available Bouguer gravity map in central and south Iraq. The gravity effect of the stripped layers was determined depending on the density log or the density density obtained from the sonic log. The density relation with the seismic velocity of Gardner et al (1974) was used to obtain density from sonic logs in case of a lack of density log. The average density of the Cretaceous and Tertiary formation were determined then the density contrast of these formations was obtained. The density contrast and thickness of all stratigraphic formations in the area between the sea level to t
... Show MoreSome auditors may think that the audit process ends with discovering misstatements and informing management about them, while the discovery of misstatements may be classified by some as the first step in the phase of separating these distortions, as the auditor should collect these misstatements, evaluate them and detail them into misstatements involving errors or misstatements involving fraud Then evaluating it to material or immaterial according to what was stated in the international auditing standards and directing management to amend the essential ones. The importance of this research lies in identifying the concept of distortions and their types, identifying the method of evaluating distortions into substantial and non-essent
... Show MoreDeep learning has recently received a lot of attention as a feasible solution to a variety of artificial intelligence difficulties. Convolutional neural networks (CNNs) outperform other deep learning architectures in the application of object identification and recognition when compared to other machine learning methods. Speech recognition, pattern analysis, and image identification, all benefit from deep neural networks. When performing image operations on noisy images, such as fog removal or low light enhancement, image processing methods such as filtering or image enhancement are required. The study shows the effect of using Multi-scale deep learning Context Aggregation Network CAN on Bilateral Filtering Approximation (BFA) for d
... Show More