The prevalence of using the applications for the internet of things (IoT) in many human life fields such as economy, social life, and healthcare made IoT devices targets for many cyber-attacks. Besides, the resource limitation of IoT devices such as tiny battery power, small storage capacity, and low calculation speed made its security a big challenge for the researchers. Therefore, in this study, a new technique is proposed called intrusion detection system based on spike neural network and decision tree (IDS-SNNDT). In this method, the DT is used to select the optimal samples that will be hired as input to the SNN, while SNN utilized the non-leaky integrate neurons fire (NLIF) model in order to reduce latency and minimize devices’ power usage. Also, a rand order code (ROC) technique is used with SNN to detect cyber-attacks. The proposed method is evaluated by comparing its performance with two other methods: IDS-DNN and IDS-SNNTLF by using three performance metrics: detection accuracy, latency, and energy usage. The simulation results have shown that IDS-SNNDT attained low power usage and less latency in comparison with IDS-DNN and IDS-SNNTLF methods. Also, IDS-SNNDT has achieved high detection accuracy for cyber-attacks in contrast with IDS-SNNTLF.
The purpose of this study was to find out the connection between the water parameters that were examined in the laboratory and the water index acquired from the examination of the satellite image of the study area. This was accomplished by analysing the Landsat-8 satellite picture results as well as the geographic information system (GIS). The primary goal of this study is to develop a model for the chemical and physical characteristics of the Al-Abbasia River in Al-Najaf Al-Ashraf Governorate. The water parameters employed in this investigation are as follows: (PH, EC, TDS, TSS, Na, Mg, K, SO4, Cl, and NO3). To collect the samples, ten sampling locations were identified, and the satellite image was obtained on the
... Show MoreObjective: Detection the presumptive prevalence of
silent celiac disease in patients with type 1 diabetes
mellitus with determination of which gender more
likely to be affected.
Methods: One hundred twenty asymptomatic patients
[75 male , 45 female] with type 1 diabetes mellitus
with mean age ± SD of 11.25 ± 2.85 year where
included in the study . All subjects were serologically
screened for the presence of anti-tissue transglutaminase
IgA antibodies (anti-tTG antibodies) by Enzyme-
Linked Immunosorbent Assay (ELISA) & total IgA
was also measured for all using radial
immunodiffusion plate . Anti-tissue transglutaminase
IgG was selectively done for patients who were
expressing negative anti-
Objective: Detection the presumptive prevalence of silent celiac disease in patients with type 1 diabetes mellitus with determination of which gender more likely to be affected.
Methods: One hundred twenty asymptomatic patients [75 male , 45 female] with type 1 diabetes mellitus with mean age ± SD of 11.25 ± 2.85 year where included in the study . All subjects were serologically screened for the presence of anti-tissue transglutaminase IgA antibodies (anti-tTG antibodies) by Enzyme-Linked Immunosorbent Assay (ELISA) & total IgA was also measured for all using radial immunodiffusion plate . Anti-tissue transglutaminase IgG was selectively done for patients who were expressing negative anti-tissue transglutaminase IgA with low tot
Epilepsy is one of the most common diseases of the nervous system around the world, affecting all age groups and causing seizures leading to loss of control for a period of time. This study presents a seizure detection algorithm that uses Discrete Cosine Transformation (DCT) type II to transform the signal into frequency-domain and extracts energy features from 16 sub-bands. Also, an automatic channel selection method is proposed to select the best subset among 23 channels based on the maximum variance. Data are segmented into frames of one Second length without overlapping between successive frames. K-Nearest Neighbour (KNN) model is used to detect those frames either to ictal (seizure) or interictal (non-
... Show MoreToday, Unmanned Aerial Vehicles (UAVs) or Drones are a valuable source of data on inspection, surveillance, mapping and 3D modelling matters. Drones can be considered as the new alternative of classic manned aerial photography due to their low cost and high spatial resolution. In this study, drones were used to study archaeological sites. The archaeological Nineveh site, which is a very famous site located in heart of the city of Mosul, in northern Iraq, was chosen. This site was the largest capital of the Assyrian Empire 3000 years ago. The site contains an external wall that includes many gates, most of which were destroyed when Daesh occupied the city in 2014. The local population of the city of Mosul has also large
... Show MoreA graphene-based supercapacitors (SC) were manufactured. The main objective of this research was to use as possible as environmentally, clean and natural materials for the SC electrodes, electrolytes and the separators. The SC consisted of a multi-layer graphene (MLG); as the electrode material, prepared by mixing graphene powder with water/acetone mixture, then the solution deposited on metal foils (aluminum and copper) by chemical spray technique, which is a simple and inexpensive technique to prepare the MLG films. The spraying time was (2 and 4 minutes) for making two MLG films with different thicknesses. The electrolytes were used is (lemon juice, table salt dissolved in water, and distillated water). The separators were a commercia
... Show MoreIn this paper, by using the Banach fixed point theorem, we prove the existence and uniqueness theorem of a fractional Volterra integral equation in the space of Lebesgue integrable ð¿1(ð‘…+) on unbounded interval [0,∞).
AO Dr. Ali Jihad, Journal of Physical Education, 2021
Pavement crack and pothole identification are important tasks in transportation maintenance and road safety. This study offers a novel technique for automatic asphalt pavement crack and pothole detection which is based on image processing. Different types of cracks (transverse, longitudinal, alligator-type, and potholes) can be identified with such techniques. The goal of this research is to evaluate road surface damage by extracting cracks and potholes, categorizing them from images and videos, and comparing the manual and the automated methods. The proposed method was tested on 50 images. The results obtained from image processing showed that the proposed method can detect cracks and potholes and identify their severity levels wit
... Show More