The prevalence of using the applications for the internet of things (IoT) in many human life fields such as economy, social life, and healthcare made IoT devices targets for many cyber-attacks. Besides, the resource limitation of IoT devices such as tiny battery power, small storage capacity, and low calculation speed made its security a big challenge for the researchers. Therefore, in this study, a new technique is proposed called intrusion detection system based on spike neural network and decision tree (IDS-SNNDT). In this method, the DT is used to select the optimal samples that will be hired as input to the SNN, while SNN utilized the non-leaky integrate neurons fire (NLIF) model in order to reduce latency and minimize devices’ power usage. Also, a rand order code (ROC) technique is used with SNN to detect cyber-attacks. The proposed method is evaluated by comparing its performance with two other methods: IDS-DNN and IDS-SNNTLF by using three performance metrics: detection accuracy, latency, and energy usage. The simulation results have shown that IDS-SNNDT attained low power usage and less latency in comparison with IDS-DNN and IDS-SNNTLF methods. Also, IDS-SNNDT has achieved high detection accuracy for cyber-attacks in contrast with IDS-SNNTLF.
In this article, we developed a new loss function, as the simplification of linear exponential loss function (LINEX) by weighting LINEX function. We derive a scale parameter, reliability and the hazard functions in accordance with upper record values of the Lomax distribution (LD). To study a small sample behavior performance of the proposed loss function using a Monte Carlo simulation, we make a comparison among maximum likelihood estimator, Bayesian estimator by means of LINEX loss function and Bayesian estimator using square error loss (SE) function. The consequences have shown that a modified method is the finest for valuing a scale parameter, reliability and hazard functions.
There is not enough studies about bacterial contamination of air condition system in the cars and houses, bacterial detection of such surrounding is necessary for the human environment.
The object of recent study was to evaluate the level of bacterial contamination in air conditioner in cars and houses in Baghdad city, Iraq.
Air samples were taken indoor from cars and house air conditioner in the Baghdad city. The result indicated that gram positive bacteria more than gram negative bacteria in air conditioner. Air condition of cars (20-500 CFU) was more contaminated than of houses (10-100 CFU).
Bacillus was the most frequently bacterial isolates genus with recovery rate B
... Show MoreKarbala province was one of the most important areas in Iraq and considered an
economic resource of vegetation such as trees of fruits, sieve and other vegetation.
This research aimed to utilize change detection for investigating the current
vegetation cover at last three decay. The main objectives of this research are collect
a group of studied area (Karbala province) satellite images in sequence time for
the same area, these image captured by Landsat (TM 1995, ETM+ 2005 and
Landsat 8 OLI (Operational Land Imager) 2015. Preprocessing such as atmosphere
correction and rectification has been done. Mosaic model between the parts of
studied area was performing. Gap filling consider being very important step has
be
Diabetic mellitus is one of the main risk factors of fungal infections because poor glycemic control is associated with a high level of glucose in blood and saliva which could be treated as nutrient to fungi. This study aimed to isolate and identification of pathogenic fungi from diabetic patient. 140 samples were taken from different places of human body from the national center of diabetic patients that related to Mustansiriyah University / college of medicine and Al-yarmuk Hospital in Baghdad. 84 sample (60%) tested positive to fungi and 56 sample (40%) tested negative to fungi. The most frequented fungi isolated have been chosen for molecular identification by PCR (Millerozyma farinosa and Candida orthopsilosis) using specific pri
... Show MoreIn this work we present a technique to extract the heart contours from noisy echocardiograph images. Our technique is based on improving the image before applying contours detection to reduce heavy noise and get better image quality. To perform that, we combine many pre-processing techniques (filtering, morphological operations, and contrast adjustment) to avoid unclear edges and enhance low contrast of echocardiograph images, after implementing these techniques we can get legible detection for heart boundaries and valves movement by traditional edge detection methods.
In this article, we define and study a family of modified Baskakov type operators based on a parameter . This family is a generalization of the classical Baskakov sequence. First, we prove that it converges to the function being approximated. Then, we find a Voronovsky-type formula and obtain that the order of approximation of this family is . This order is better than the order of the classical Baskakov sequence whenever . Finally, we apply our sequence to approximate two test functions and analyze the numerical results obtained.
Features is the description of the image contents which could be corner, blob or edge. Corners are one of the most important feature to describe image, therefore there are many algorithms to detect corners such as Harris, FAST, SUSAN, etc. Harris is a method for corner detection and it is an efficient and accurate feature detection method. Harris corner detection is rotation invariant but it isn’t scale invariant. This paper presents an efficient harris corner detector invariant to scale, this improvement done by using gaussian function with different scales. The experimental results illustrate that it is very useful to use Gaussian linear equation to deal with harris weakness.
In this paper, a fast lossless image compression method is introduced for compressing medical images, it is based on splitting the image blocks according to its nature along with using the polynomial approximation to decompose image signal followed by applying run length coding on the residue part of the image, which represents the error caused by applying polynomial approximation. Then, Huffman coding is applied as a last stage to encode the polynomial coefficients and run length coding. The test results indicate that the suggested method can lead to promising performance.