The prevalence of using the applications for the internet of things (IoT) in many human life fields such as economy, social life, and healthcare made IoT devices targets for many cyber-attacks. Besides, the resource limitation of IoT devices such as tiny battery power, small storage capacity, and low calculation speed made its security a big challenge for the researchers. Therefore, in this study, a new technique is proposed called intrusion detection system based on spike neural network and decision tree (IDS-SNNDT). In this method, the DT is used to select the optimal samples that will be hired as input to the SNN, while SNN utilized the non-leaky integrate neurons fire (NLIF) model in order to reduce latency and minimize devices’ power usage. Also, a rand order code (ROC) technique is used with SNN to detect cyber-attacks. The proposed method is evaluated by comparing its performance with two other methods: IDS-DNN and IDS-SNNTLF by using three performance metrics: detection accuracy, latency, and energy usage. The simulation results have shown that IDS-SNNDT attained low power usage and less latency in comparison with IDS-DNN and IDS-SNNTLF methods. Also, IDS-SNNDT has achieved high detection accuracy for cyber-attacks in contrast with IDS-SNNTLF.
The UN organization is considered one of the most important organizations at the international level. It has accomplished multiple tasks and roles of many different issues and events that hit the developing and advanced world countries. It has performed a series of procedures and laws that have had an impact on ending the wars and conflicts that plagued some countries and continued for a period of time in the past. Moreover, it has improved the level of the international relations between a number of countries due to the problems and incidents took place between them. It has relied on finding solutions and treatments for humanitarian problems such as the preservation of the environment, preventing the spread of epidemics and diseases Thi
... Show MoreGenetic polymorphism in a fragment of NADH (ND4),400bp long from the Mitochondrial DNA
(mtDNA) of Mediterranean fruit fly ceratitis capitata (Wiedemann, 1824) using PCR-RFLP method
with the restriction enzyme EcoRV in samples collected from three governorates in the middle of Iraq.
The purposes of this study is to establish database, discover the introduction source as well as studying
the genetic diversity for this economic pest in Iraq. The results show that there is a genetic
polymorphism of the studied gene fragment among Kut governorate as compaired with the other
studied samples according to digestion results of the restriction enzyme EcoRV.
In this work a model of a source generating truly random quadrature phase shift keying (QPSK) signal constellation required for quantum key distribution (QKD) system based on BB84 protocol using phase coding is implemented by using the software package OPTISYSTEM9. The randomness of the sequence generated is achieved by building an optical setup based on a weak laser source, beam splitters and single-photon avalanche photodiodes operating in Geiger mode. The random string obtained from the optical setup is used to generate the quadrature phase shift keying signal constellation required for phase coding in quantum key distribution system based on BB84 protocol with a bit rate of 2GHz/s.
Healthcare professionals routinely use audio signals, generated by the human body, to help diagnose disease or assess its progression. With new technologies, it is now possible to collect human-generated sounds, such as coughing. Audio-based machine learning technologies can be adopted for automatic analysis of collected data. Valuable and rich information can be obtained from the cough signal and extracting effective characteristics from a finite duration time interval that changes as a function of time. This article presents a proposed approach to the detection and diagnosis of COVID-19 through the processing of cough collected from patients suffering from the most common symptoms of this pandemic. The proposed method is based on adopt
... Show MoreSuicidal ideation is one of the most severe mental health issues faced by people all over the world. There are various risk factors involved that can lead to suicide. The most common & critical risk factors among them are depression, anxiety, social isolation and hopelessness. Early detection of these risk factors can help in preventing or reducing the number of suicides. Online social networking platforms like Twitter, Redditt and Facebook are becoming a new way for the people to express themselves freely without worrying about social stigma. This paper presents a methodology and experimentation using social media as a tool to analyse the suicidal ideation in a better way, thus helping in preventing the chances of being the victim o
... Show MoreRespiratory tract infections in sheep are among the important health problems that affect all sheep ages around the world. Nine bacterial isolates obtained from sheep with respiratory tract infections were selected to be used in the current study. The isolates included 3 Staphylococcus aureus, 4 Klebsiella pneumoniae, and 2 Pseudomonas aeruginosa. Following the primers design by the Primer3Plus software tool and optimization of the conventional polymerase chain reaction (PCR), the primers were validated for their use in the multiplex PCR experiments. The MFEprimer program was used to check the suitability of the primer set combinations for multiplex PCR. The MFEprimer software was successful in designing the multiplex-PCR experiments and de
... Show MoreIn this research, a study is introduced on the effect of several environmental factors on the performance of an already constructed quality inspection system, which was designed using a transfer learning approach based on convolutional neural networks. The system comprised two sets of layers, transferred layers set from an already trained model (DenseNet121) and a custom classification layers set. It was designed to discriminate between damaged and undamaged helical gears according to the configuration of the gear regardless to its dimensions, and the model showed good performance discriminating between the two products at ideal conditions of high-resolution images.
So, this study aimed at testing the system performance at poor s
... Show MoreIn this research, a study is introduced on the effect of several environmental factors on the performance of an already constructed quality inspection system, which was designed using a transfer learning approach based on convolutional neural networks. The system comprised two sets of layers, transferred layers set from an already trained model (DenseNet121) and a custom classification layers set. It was designed to discriminate between damaged and undamaged helical gears according to the configuration of the gear regardless to its dimensions, and the model showed good performance discriminating between the two products at ideal conditions of high-resolution images. So, this study aimed at testing the system performance at poo
... Show More