Iraqi crude Atmospheric residual fraction supplied from al-Dura refinery was treated to remove metals contaminants by solvent extraction method, with various hydrocarbon solvents and concentrations. The extraction method using three different type solvent (n-hexane, n-heptane, and light naphtha) were found to be effective for removal of oil-soluble metals from heavy atmospheric residual fraction. Different solvents with using three different hydrocarbon solvents (n-hexane, n-heptane, and light naphtha) .different variables were studied solvent/oil ratios (4/1, 8/1, 10/1, 12/1, and 15/1), different intervals of perceptual (15, 30-60, 90 and 120 min) and different temperature (30, 45, 60 and 90 °C) were used. The metals removal percent were found depending on the yield of asphaltene. The solvent-oil ratio had important effects on the amount of metal removal. The metals removal was increased at increasing temperatures from 30 to 90 0C increases the metal ion precipitated. The highest Ni precipitated was 79.23 ppm using heptane at 90 0C while for V the highest value was 64.51 ppm using also heptane at 90 0C, while the mixing time decreased metals removal. With increasing asphalt yield, the removal of metal was more selective. Among the solvents used in the extraction treatment method, the highest Ni precipitated was 76 ppm using hexane at 150 ml solvent and showed the most promising results. Increasing mixing time increases metals removal for V, the highest value was 65.51 ppm using either heptane or light naphtha. The highest Ni precipitated was 78 ppm using heptane at 120 min while for V the highest value was 67 ppm using either heptane or light naphtha after 120 min.
Thin films of zinc selenide ZnSe have been prepared by using thermal evaporation method in vacuum with different thickness (1000 – 4000) Ao and a deposited on glass substrate and studying some electrical properties including the determination of A.C conductivity and real, imaginary parts of dielectric constant and tangent of loss angle. The result shows that increasing value of A.C conductivity with increasing thickness and temperature, and increasing capacitance value with increasing the temperature and decrease with increasing frequency . Real and imaginary parts of dielectric constant and tangent of loss angle decrease with increasing frequency
In this study, method for experimentally determining the electron density (ne) and the electron temperature (Te) in the atmospheric Argon plasma jet is used; it is based on optical emission spectroscopy (OES). Boltzmann plot method used to calculate these parameters measured for different values of gas flow rate. The results show that the electron temperature decreasing with the increase of gas flow rate also indicates an increasing in the electron density of plasma jet with increasing of gas flow rate.
The research aims to develop and build a plasma jet system operating under atmospheric pressure.for biological purposes. The advanced plasma system consists of a power supply and a plasma torch. The source of the development of the system is a previous laboratory system that was developed by changing the voltage and frequency of the power supply, as the power provider equips the system with a voltage in the form of a sine wave whose value is fixed at about (7.5kV) peak to peak and its frequency is about (28 kHz). The plasma torch consists of a teflon tube with of width of (10 m ) located at (10mm) from the end of the tube. The current waveform and voltage wave were measured using a current and voltage sensor and an oscilloscop
... Show MoreThe study is based on the selective binding ability of the drug compound procaine (PRO) on a surface imprinted with nylon 6 (N6) polymer. Physical characterization of the polymer template was performed by X-ray diffraction and DSC thermal analysis. The imprinted polymer showed a high adsorption capacity to trap procaine (237 µg/g) and excellent recognition ability with an imprinted factor equal to 3.2. The method was applied to an extraction column simulating a solid-phase extraction to separate the drug compound in the presence of tinoxicam and nucleosimide separately and in a mixture of them with a recovery rate more than the presence of tinoxicam and nucleosimide separately and in a mixture of them with a recovery rate of more t
... Show MoreIn this paper flotation method experiments were performed to investigate the removal of lead and zinc. Various parameters such as pH, air flow rate, collector concentrations, collector type and initial metal concentrations were tested in a bubble column of 6 cm inside diameter. High recoveries of the two metals have been obtained by applying the foam flotation process, and at relatively short time 45 minutes . The results show that the best removal of lead about 95% was achieved at pH value of 8 and the best removal of zinc about 93% was achieved
at pH value of 10 by using 100 mg/l of Sodium dodecylsulfate (SDS) as a collector and 1% ethanol as a frother. The results show that the removal efficiency increased with increasing initial m
A Ligand (ECA) methyl 2-((1-cyano-2-ethoxy-2-oxoethyl)diazenyl)benzoate with metals of (Co2+, Ni2+, Cu2+) were prepared and characterization using H-NMR, atomic absorption spectroscopy, ultra violet (UV) visible, magnetic moments measurements, bioactivity, and Molar conductivity measurements in soluble ethanol. Complexes have been prepared using a general formula which was suggested as [M (ECA)2] Cl2, where M = (Cobalt(II), Nickel(II) and Copper(II), the geometry shape of the complexes is octahedral.
Ni2O3 nanomaterial, a phase of nickel oxide, is synthesized by a simple chemical process. The pure raw materials used in the present process were nickel chloride hexahydrate NiCl2.6H2O and potassium hydroxide KOH by utilizing temperature at 250 oC for 2 hour. The structural, morphological and optical properties of the synthesized specimens of Ni2O3 were investigated employing diverse techniques such as XRD, AFM, SEM and UV-Vis, respectively. The XRD technique confirms the presence of Ni2O3 nanomaterial with crystal size of 57.083 nm which indexing to the (2θ) of 31.82; this results revealed the Ni2O3 was a ph
... Show MoreNi2O3 nanomaterial, a phase of nickel oxide, is synthesized by a simple chemical process. The pure raw materials used in the present process were nickel chloride hexahydrate NiCl2.6H2O and potassium hydroxide KOH by utilizing temperature at 250 oC for 2 hour. The structural, morphological and optical properties of the synthesized specimens of Ni2O3 were investigated employing diverse techniques such as XRD, AFM, SEM and UV-Vis, respectively. The XRD technique confirms the presence of Ni2O3 nanomaterial with crystal size of 57.083 nm which indexing to the (2θ) of 31.82; this results revealed the Ni2O3 was a phase of nickel oxide with Nano structure. The synthesized Ni2O3 will be useful in manufacturng electrodes materials f
... Show More