The ground state proton, neutron and matter densities andcorresponding root mean square radii of unstable proton-rich 17Neand 27P exotic nuclei are studied via the framework of the twofrequencyshell model. The single particle harmonic oscillator wavefunctions are used in this model with two different oscillator sizeparameters core b and halo , b the former for the core (inner) orbitswhereas the latter for the halo (outer) orbits. Shell model calculationsfor core nucleons and for outer (halo) nucleons in exotic nuclei areperformed individually via the computer code OXBASH. Halostructure of 17Ne and 27P nuclei is confirmed. It is found that thestructure of 17Ne and 27P nuclei have 25 / 2 (1d ) and 1/ 2 2s -dominantconfigurations, respectively. Elastic electron scattering form factorsof these exotic nuclei are also studied using the plane wave Bornapproximation. Effects of the long tail behavior of the proton densitydistribution on the proton form factors of 17Ne and 27P areanalyzed. It is found that the difference between the proton formfactor of 17Ne and that of stable 20Ne (or of 27P and that of stable31P) comes from the difference in the proton density distribution ofthe last two protons (or of the last proton) in the two nuclei. It isconcluded that elastic electron scattering will be an efficient tool (inthe near future) to examine proton-halo phenomena of proton-richnuclei.
The aim of this work is to evaluate the one- electron expectation value from the radial electronic density function D(r1) for different wave function for the 2S state of Be atom . The wave function used were published in 1960,1974and 1993, respectavily. Using Hartree-Fock wave function as a Slater determinant has used the partitioning technique for the analysis open shell system of Be (1s22s2) state, the analyze Be atom for six-pairs electronic wave function , tow of these are for intra-shells (K,L) and the rest for inter-shells(KL) . The results are obtained numerically by using computer programs (Mathcad).
In this study, the electron coefficients; Mean energy , Mobility and Drift velocity of different gases Ar, He, N2 and O2 in the ionosphere have been calculated using BOLSIG+ program to check the solution results of Boltzmann equation results, and effect of reduced electric field (E/N) on electronic coefficients. The electric field has been specified in the limited range 1-100 Td. The gases were in the ionosphere layer at an altitude frame 50-2000 km. Furthermore, the mean energy and drift velocity steadily increased with increases in the electric field, while mobility was reduced. It turns out that there is a significant and obvious decrease in mobility as a result of inelastic collisions and in addition lit
... Show MoreThe calculation of the charge on an isolated dust grain immersed in plasma with different grain sizes is a challenging one, especially under moderately high plasma temperature when secondary electron emission significant. The discrete charging model is used to calculate the charges of dust grain in dusty plasma. In this model, we included the effect of grain size dependence on secondary electron emission. The results show that the secondary electron emission from the glass dust grains due to energetic electron (40eV) can lead to the small grain to be slightly more positive than the large grain. Under these conditions, the smaller and larger grains would be attracted rather than repelled, which possibly lead to enhanced coagulation rates.
... Show MoreThe main goal of this work is to obtain the plasma electron temperature Te by optical emission spectroscopy of low pressure microwave argon plasma, as a function of working pressure and microwave power. A plasma system was designed and constructed in our laboratory using a magnetron of domestic microwave oven with power 800W without any commercial part. The applied voltage on the magnetron electrical circuit is changed for the purpose of obtaining the variable values of the microwave power. The spectral detection is performed with a spectrometer of wavelength range (200−1000nm). The working pressure and magnetron applied voltage were 0.3-3.0mbar and 180-240V, respectively. Two methods had been applied to estimate the electron temperatu
... Show More
This study has three parts, the first one is the synthesis of a novel Schiff bases by the condensation of guanine or 9-[{2-hydroxyethoxy}methyl]-9H-guanine with variety aldehydes to yield four different bases as follows: (E)-2-((4-nitrobenzylidene)amino)-1,9-dihydro-6H-purin-6-one (S1), (E)-2-((4-methoxybenzylidene)amino)-1,9-dihydro-6H-purin-6-one (S2), (E)-2-((2-hydroxybenzylidene) amino)-9-((2-hydroxy ethoxy)methyl)-1,9-dihydro-6H-purin-6-one (S3), and (E)-2-(((9-((2-hydroxy ethoxy)methyl)-6-oxo-6,9-dihydro-1H-purin-2-yl)imino)methyl)benzoic acid (S4). Then, spectroscopic analyses such as Elemental Analysis, UV/VIS, Mass spectra, FTIR, 1H,13C-NMR were made to recognize these bases. In the second part, the ability of synthesized bases to
... Show MoreKA Hadi, AH Asma’a, IJONS, 2018 - Cited by 1
A computational investigation is carried out in the field of charged –particle optics with the aid of numerical analysis method using the personal computer. The work is concerned with the design of electron gun with space-charge effect. The Finite element method (FEM) used in the solution of Poison's equation for determine the axial potential distribution of the two-electrode immersion lens operated under zero magnification condition , and from the solution of the paraxial ray equation the optical properties such as the focal length , spherical and chromatic aberration coefficients are determined, also a calculation of the brightness and perveance for the lens. The electrodes geometry was determined in two and three dimensi
... Show More