In recent days, the escalating need to seamlessly transfer data traffic without discontinuities across the Internet network has exerted immense pressure on the capacity of these networks. Consequently, this surge in demand has resulted in the disruption of traffic flow continuity. Despite the emergence of intelligent networking technologies such as software-defined networking, network cloudification, and network function virtualization, they still need to improve their performance. Our proposal provides a novel solution to tackle traffic flow continuity by controlling the selected packet header bits (Differentiated Services Code Point (DSCP)) that govern the traffic flow priority. By setting the DSCP bits, we can determine the appropriate precedence level for the data traffic flow. The control and modification of the DSCP bits directly impact the priority assigned to data packets, thereby shaping the traffic flow continuity accordingly. The evaluation and performance analysis of the proposed network were conducted using the Mininet simulator and the MATLAB platform. The outcomes of the comprehensive testing demonstrate that the implementation of our novel priority management technique has successfully reduced queuing delay and minimized packet loss. As a result, the overall data traffic continuity has been significantly enhanced. The obtained results demonstrate that the traffic flow continuity, handled by the Software-Defined Networking (SDN) controller with the support of DSCP modification, has increased by approximately 65% when implementing the proposed priority management based on DSCP bits modification in the SDN network.
A newly developed analytical method characterized by its speed and sensitivity for the determination of metoclopramide hydrochloride (MCP-HCl) in pure and pharmaceutical preparation via turbidimetric measurement (0-180o) by Ayah 6SX1-T-2D Solar cell-CFI Analyser. The method was based on the reaction of phosphomolybdic acid with metoclopramide hydrochloride in acidic medium to form yellowish white precipitate for the ion-pair complex. Turbidity was measured via the reflection of incident light that collides on the surface precipitated particles at 0-180o. Chemical and physical parameters were studied and optimized. The calibration graph was linear in the range of 0.0005-3 or 0.0005- 4 mMol.L-1, with correlation coefficient r = 0.9947&
... Show MoreThis work represents study the rock facies and flow unit classification for the Mishrif carbonate reservoir in Buzurgan oil Field, which located n the south eastern Iraq, using wire line logs, core samples and petrophysical data (log porosity and core permeability). Hydraulic flow units were identified using flow zone indicator approach and assessed within each rock type to reach better understanding of the controlling role of pore types and geometry in reservoir quality variations. Additionally, distribution of sedimentary facies and Rock Fabric Number along with porosity and permeability was analyzed in three wells (BU-1, BU-2, and BU-3). The interactive Petrophysics - IP software is used to assess the rock fabric number, flow zon
... Show MoreThe objective of this study was tointroduce a recursive least squares (RLS) parameter estimatorenhanced by using a neural network (NN) to facilitate the computing of a bit error rate (BER) (error reduction) during channels estimation of a multiple input-multiple output orthogonal frequency division multiplexing (MIMO-OFDM) system over a Rayleigh multipath fading channel.Recursive least square is an efficient approach to neural network training:first, the neural network estimator learns to adapt to the channel variations then it estimates the channel frequency response. Simulation results show that the proposed method has better performance compared to the conventional methods least square (LS) and the original RLS and it is more robust a
... Show MoreLung cancer, similar to other cancer types, results from genetic changes. However, it is considered as more threatening due to the spread of the smoking habit, a major risk factor of the disease. Scientists have been collecting and analyzing the biological data for a long time, in attempts to find methods to predict cancer before it occurs. Analysis of these data requires the use of artificial intelligence algorithms and neural network approaches. In this paper, one of the deep neural networks was used, that is the enhancer Deep Belief Network (DBN), which is constructed from two Restricted Boltzmann Machines (RBM). The visible nodes for the first RBM are 13 nodes and 8 nodes in each hidden layer for the two RBMs. The enhancer DBN was tr
... Show MoreDeep submicron technologies continue to develop according to Moore’s law allowing hundreds of processing elements and memory modules to be integrated on a single chip forming multi/many-processor systems-on-chip (MPSoCs). Network on chip (NoC) arose as an interconnection for this large number of processing modules. However, the aggressive scaling of transistors makes NoC more vulnerable to both permanent and transient faults. Permanent faults persistently affect the circuit functionality from the time of their occurrence. The router represents the heart of the NoC. Thus, this research focuses on tolerating permanent faults in the router’s input buffer component, particularly the virtual channel state fields. These fields track packets f
... Show MoreSeven fish species were collected from the drainage network at Al-Madaen region, south of
Baghdad with the aid of a cast net during the period from March to August 1993. These fishes
were infected with 22 parasite species (seven sporozoans, three ciliated protozoans, seven
monogeneans, two nematodes, one acanthocephalan and two crustaceans) and one fungus
species. Among such parasites, Chloromyxum wardi and Cystidicola sp. are reported here for
the first time in Iraq. In addition, 11 new host records are added to the list of parasites of
fishes of Iraq.
ANN modeling is used here to predict missing monthly precipitation data in one station of the eight weather stations network in Sulaimani Governorate. Eight models were developed, one for each station as for prediction. The accuracy of prediction obtain is excellent with correlation coefficients between the predicted and the measured values of monthly precipitation ranged from (90% to 97.2%). The eight ANN models are found after many trials for each station and those with the highest correlation coefficient were selected. All the ANN models are found to have a hyperbolic tangent and identity activation functions for the hidden and output layers respectively, with learning rate of (0.4) and momentum term of (0.9), but with different data
... Show MoreMetal corrosion is a destructive process for many industrial operations, including oil well acidizing and acid pickling. Therefore, numerous efforts made by many researchers to control the steel corrosion. In the present work, A (E)-4-(((4-(5-mercapto-1,3,4-oxadiazol-2-yl) phenyl) amino) methyl)-2-methoxyphenol (MOPM) has been synthesized and characterized as a new corrosion inhibitor for mild steel in 0.1 M hydrochloric acid. FTIR and 1 HNMR were used in the diagnosis of MOPM, while electrochemical polarization technique was employed to test the performance of inhibitor at various temperatures and inhibitor concentrations. Electrochemical studies showed that MOPM acts as a mixed-type inhibitor with a maximum inhibition efficiency of
... Show More