Preferred Language
Articles
/
vhf5_40BVTCNdQwCSizQ
Bayesian Method in Classification Regression Tree to estimate nonparametric additive model compared with Logistic Model with Application
...Show More Authors

The use of Bayesian approach has the promise of features indicative of regression analysis model classification tree to take advantage of the above information by, and ensemble trees for explanatory variables are all together and at every stage on the other. In addition to obtaining the subsequent information at each node in the construction of these classification tree. Although bayesian estimates is generally accurate, but it seems that the logistic model is still a good competitor in the field of binary responses through its flexibility and mathematical representation. So is the use of three research methods data processing is carried out, namely: logistic model, and model classification regression tree, and bayesian regression tree model. Having been in this research compare these methods form a model for additive function to some nonparametric function. It was a trade-off between these process models based on the classification accuracy by misclassification error, and estimation accuracy by the root of the mean squares error: RMSE. It was the application on patients with diabetes data for those aged 15 years and below are taken from the sample size (200) was withdrawn from the Children Hospital in Al-Eskan / Baghdad.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Jan 01 2021
Journal Name
International Journal Of Agricultural And Statistical Sciences
USE OF MODIFIED MAXIMUM LIKELIHOOD METHOD TO ESTIMATE PARAMETERS OF THE MULTIPLE LINEAR REGRESSION MODEL
...Show More Authors

Scopus
Publication Date
Fri Sep 06 2024
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of Some Wavelet Transformations to Estimate Nonparametric Regression Function
...Show More Authors

The purpose of this article is to improve and minimize noise from the signal by studying wavelet transforms and showing how to use the most effective ones for processing and analysis. As both the Discrete Wavelet Transformation method was used, we will outline some transformation techniques along with the methodology for applying them to remove noise from the signal. Proceeds based on the threshold value and the threshold functions Lifting Transformation, Wavelet Transformation, and Packet Discrete Wavelet Transformation. Using AMSE, A comparison was made between them , and the best was selected. When the aforementioned techniques were applied to actual data that was represented by each of the prices, it became evident that the lift

... Show More
Crossref
Publication Date
Wed Mar 18 2020
Journal Name
Baghdad Science Journal
New Versions of Liu-type Estimator in Weighted and non-weighted Mixed Regression Model
...Show More Authors

This paper considers and proposes new estimators that depend on the sample and on prior information in the case that they either are equally or are not equally important in the model. The prior information is described as linear stochastic restrictions. We study the properties and the performances of these estimators compared to other common estimators using the mean squared error as a criterion for the goodness of fit. A numerical example and a simulation study are proposed to explain the performance of the estimators.

View Publication Preview PDF
Scopus (5)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Thu Feb 01 2018
Journal Name
Journal Of Economics And Administrative Sciences
Use Simulation To Differentiate Between Some Modern Methods To the Model GM(1,1) To Find Missing Values And Estimate Parameters With A Practical Application
...Show More Authors

Abstract

       The grey system model GM(1,1) is the model of the prediction of the time series and the basis of the grey theory. This research presents the methods for estimating parameters of the grey model GM(1,1) is the accumulative method (ACC), the exponential method (EXP), modified exponential method (Mod EXP) and the Particle Swarm Optimization method (PSO). These methods were compared based on the Mean square error (MSE) and the Mean Absolute percentage error (MAPE) as a basis comparator and the simulation method was adopted for the best of the four methods, The best method was obtained and then applied to real data. This data represents the consumption rate of two types of oils a he

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Jan 04 2023
Journal Name
College Of Islamic Sciences
Predicting the financial distress of companies using logistic regression and its impact on earnings per share in companies listed on the Iraqi Stock Exchange: Predicting the financial distress of companies using logistic regression and its impact on earnings per share in companies listed on the Iraqi Stock Exchange
...Show More Authors

Abstract

The prevention of bankruptcy not only prolongs the economic life of the company and increases its financial performance, but also helps to improve the general economic well-being of the country. Therefore, forecasting the financial shortfall can affect various factors and affect different aspects of the company, including dividends. In this regard, this study examines the prediction of the financial deficit of companies that use the logistic regression method and its impact on the earnings per share of companies listed on the Iraqi Stock Exchange. The time period of the research is from 2015 to 2020, where 33 companies that were accepted in the Iraqi Stock Exchange were selected as a sample, and the res

... Show More
View Publication Preview PDF
Publication Date
Mon Jun 01 2015
Journal Name
Journal Of Economics And Administrative Sciences
Constructing fuzzy linear programming model with practical application
...Show More Authors

This paper deals with constructing a model of fuzzy linear programming with application on fuels product of Dura- refinery , which consist of seven products that have direct effect ondaily consumption . After Building the model which consist of objective function represents the selling prices ofthe products and fuzzy productions constraints and fuzzy demand constraints addition to production requirements constraints , we used program of ( WIN QSB )  to find the optimal solution

View Publication Preview PDF
Crossref
Publication Date
Sat Dec 31 2022
Journal Name
Journal Of Economics And Administrative Sciences
Seemingly Unrelated Regression Model to Measure the Profitability of Some Iraqi Private Commercial Banks with Presence of Outliers
...Show More Authors

A seemingly uncorrelated regression (SUR) model is a special case of multivariate models, in which the error terms in these equations are contemporaneously related. The method estimator (GLS) is efficient because it takes into account the covariance structure of errors, but it is also very sensitive to outliers. The robust SUR estimator can dealing outliers. We propose two robust methods for calculating the estimator, which are (S-Estimations, and FastSUR). We find that it significantly improved the quality of SUR model estimates. In addition, the results gave the FastSUR method superiority over the S method in dealing with outliers contained in the data set, as it has lower (MSE and RMSE) and higher (R-Squared and R-Square Adjus

... Show More
View Publication Preview PDF
Publication Date
Thu Oct 01 2015
Journal Name
Journal Of Economics And Administrative Sciences
Estimation Multivariate data points in spatial statistics with application
...Show More Authors

This paper  deals  to how to estimate points non measured spatial data when the number of its terms (sample spatial) a few, that are not preferred for the estimation process, because we also know that whenever if the data is large, the estimation results of the points non measured to be better and thus the variance estimate less, so the idea of this paper is how to take advantage of the data other secondary (auxiliary), which have a strong correlation with the primary data (basic) to be estimated single points of non-measured, as well as measuring the variance estimate, has been the use of technique Co-kriging in this field to build predictions spatial estimation process, and then we applied this idea to real data in th

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Jan 01 2021
Journal Name
Annals Of Pure And Applied Mathematics
Linear Regression Model Using Bayesian Approach for Iraqi Unemployment Rate
...Show More Authors

In this paper we used frequentist and Bayesian approaches for the linear regression model to predict future observations for unemployment rates in Iraq. Parameters are estimated using the ordinary least squares method and for the Bayesian approach using the Markov Chain Monte Carlo (MCMC) method. Calculations are done using the R program. The analysis showed that the linear regression model using the Bayesian approach is better and can be used as an alternative to the frequentist approach. Two criteria, the root mean square error (RMSE) and the median absolute deviation (MAD) were used to compare the performance of the estimates. The results obtained showed that the unemployment rates will continue to increase in the next two decade

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sat Sep 01 2007
Journal Name
Journal Of Economics And Administrative Sciences
Comparison Between Ordinary Method and Robust Method to estimate the Parameters of the Univariate Mixed Model with Low Order
...Show More Authors

A condense study was done to compare between the ordinary estimators. In particular the maximum likelihood estimator and the robust estimator, to estimate the parameters of the mixed model of order one, namely ARMA(1,1) model.

Simulation study was done for a varieties the model.  using: small, moderate and large sample sizes, were some new results were obtained. MAPE was used as a statistical criterion for comparison.

 

View Publication Preview PDF
Crossref