Here, we found an estimation of best approximation of unbounded functions which satisfied weighted Lipschitz condition with respect to convex polynomial by means of weighted Totik-Ditzian modulus of continuity
This paper deals with finding the approximation solution of a nonlinear parabolic boundary value problem (NLPBVP) by using the Galekin finite element method (GFEM) in space and Crank Nicolson (CN) scheme in time, the problem then reduce to solve a Galerkin nonlinear algebraic system(GNLAS). The predictor and the corrector technique (PCT) is applied here to solve the GNLAS, by transforms it to a Galerkin linear algebraic system (GLAS). This GLAS is solved once using the Cholesky method (CHM) as it appear in the matlab package and once again using the Cholesky reduction order technique (CHROT) which we employ it here to save a massive time. The results, for CHROT are given by tables and figures and show
... Show MoreIn this research, the nonparametric technique has been presented to estimate the time-varying coefficients functions for the longitudinal balanced data that characterized by observations obtained through (n) from the independent subjects, each one of them is measured repeatedly by group of specific time points (m). Although the measurements are independent among the different subjects; they are mostly connected within each subject and the applied techniques is the Local Linear kernel LLPK technique. To avoid the problems of dimensionality, and thick computation, the two-steps method has been used to estimate the coefficients functions by using the two former technique. Since, the two-
... Show MoreThis article deals with the approximate algorithm for two dimensional multi-space fractional bioheat equations (M-SFBHE). The application of the collection method will be expanding for presenting a numerical technique for solving M-SFBHE based on “shifted Jacobi-Gauss-Labatto polynomials” (SJ-GL-Ps) in the matrix form. The Caputo formula has been utilized to approximate the fractional derivative and to demonstrate its usefulness and accuracy, the proposed methodology was applied in two examples. The numerical results revealed that the used approach is very effective and gives high accuracy and good convergence.
This research discusses the subject of identity in the urban environment as it attempts to answer a number of questions that come with the concept of identity. The first of these questions: What is identity? Can a definition or conceptual framework be developed for identity? What about individual, collective, cultural, ethnic, political and regional identity? Is there a definition of identity in the urban environment in particular? If there is a definition of identity, what about social mobility responsible for social change? How can we see identity through this kinetics? Can we assume that identity in the urban environment has a variable structure or is of variable shape with a more stable structure? Can we determine the spatial-tempora
... Show MoreThe goal of this article is to construct fibrewise w-compact (resp. locally w-compact) spaces. Some related results and properties of these concepts will be investigated. Furthermore, we investigate various relationships between these concepts and three classes of fibrewise w-separation axioms.
Bipedal robotic mechanisms are unstable due to the unilateral contact passive joint between the sole and the ground. Hierarchical control layers are crucial for creating walking patterns, stabilizing locomotion, and ensuring correct angular trajectories for bipedal joints due to the system’s various degrees of freedom. This work provides a hierarchical control scheme for a bipedal robot that focuses on balance (stabilization) and low-level tracking control while considering flexible joints. The stabilization control method uses the Newton–Euler formulation to establish a mathematical relationship between the zero-moment point (ZMP) and the center of mass (COM), resulting in highly nonlinear and coupled dynamic equations. Adaptiv
... Show MoreIn this study, we investigate about the run length properties of cumulative sum (Cusum) and The exponentially weighted moving average (EWMA) control charts, to detect positive shifts in the mean of the process for the poisson distribution with unknown mean. We used markov chain approach to compute the average and the standard deviation for run length for Cusum and EWMA control charts, when the variable under control follows poisson distribution. Also, we used the Cusum and the EWMA control charts for monitoring a process mean when the observations (products are selected from Al_Mamun Factory ) are identically and independently distributed (iid) from poisson distribution i
... Show More