Globally, buildings use about 40% of energy. Many elements, such as the physical properties of the structure, the efficiency of the cooling and heating systems, the activity of the occupants, and the building’s sustainability, affect the energy consumption of a building. It is really difficult to predict how much energy a building will need. To improve the building’s sustainability and create sustainable energy sources to reduce carbon dioxide emissions from fossil fuel combustion, estimating the building's energy use is necessary. This paper explains the energy consumed in the lecture building of the Al-Khwarizmi College of Engineering, University of Baghdad (UOB), Baghdad, Iraq. The weather data and the building construction information were collected for a specific period and put into a specific data set. That data was used to find the value of energy consumption in the building using artificial intelligence and data analysis. A Python library called Scikit-learn is used to implement machine learning algorithms. In particular, the Multi-layer Perceptron regressor (MLPRegressor) algorithm was used to predict the consumption. The importance of this work lies in predicting the amount of energy consumed. The outcomes of this work can be used to predict the energy consumed by any building before it is built. The used methodology shows the ability to predict energy performance in educational buildings using previous results and train the model on them, and prediction accuracy depends on the amount of data available for the training in artificial intelligence (AI) steps to give the highest accuracy. The prediction was checked using root-mean-square error (RMSE) and coefficient of determination (R²) and we arrived at 0.16 and 0.97 for RMSE and R², respectively.
The spherical double pole-piece electron lens i§ depend on some
fact0rs : the- minimum va}ue-of projector fo·cal length (Fp)i:J,Iill • the
maximum value of magnetic flux density (Bm) , the total hal[ width
,(W) o'f asyriunetrical clln'e of magnetic field distribution [because there are differe_nt values of bore diameter (D1) • i. &
... Show MoreNovel bidentate Schiff bases having nitrogen-sulphur donor sequence was synthesized from condensation of racemate camphor, (R)-camphor and (S)-camphor with Methyl hydrazinecarbodithioate (SMDTC). Its metal complexes were also prepared through the reaction of these ligands with silver and bismuth salts. All complexes were characterized by elemental analyses and various physico-chemical techniques. These Schiff bases behaved as uninegatively charged bidentate ligands and coordinated to the metal ions via ?-nitrogen and thiolate sulphur atoms. The NS Schiff bases formed complexes of general formula, [M(NS)2] or [M(NS)2.H2O] where M is BiIII or AgI, the expected geometry is octahedral for Bi(III) complexes while Ag(I) is expected to oxidized t
... Show Morenew six mixed ligand complexes of some transition metal ions Manganese (II), Cobalt(II), Iron (II), Nickel (II) , and non transition metal ion zinc (II) And Cadmium(II) with L-valine (Val H ) as a primary ligand and Saccharin (HSac) as a secondary ligands have been prepared. All the prepared complexes have been characterized by molar conductance, magnetic susceptibility infrared, electronic spectral, Elemental microanalysis (C.H.N) and AA . The complexes with the formulas [M(Val)2(HSac)2] M= Mn (II) , Fe (II) , Co(II) ,Ni(II), Cu (II),Zn(II) and Cd(II) L- Val H= (C5H11NO2) , C7H5NO3S The study shows that these complexes have octahedral geometry; The metal complexes have been screened for their in microbiological activities against bacteria.
... Show MoreIn this work , the ligand [N-(4-Methoxybenzoyl amino)-thioxomethyl] Methionine acid has been synthesized by the reaction of 4- Methoxybenzoyl isothiocyanate with methionine acid . The metal complexes were prepared through the reaction of metals chlorides of Co(II) , Ni(II), Cu(II), Zn(II) and Cd(II) in ethanol as solvent . The ligand (MbM) and its metal complexes have been characterized by elemental analysis (CHNS), IR, 1H-13CNMR and UV- Vis spectra, magnetic susceptibility measurements, molar conductivity, melting points and atomic absorption. The metal-ligand ratio was determined by mole ratio method. The suggested structures for the Co(II), Ni(II), Cd(II) and Zn(II) complexes are tetrahedral geometry and the Cu(II) complex
... Show MoreComparison is the most common and effective technique for human thinking: the human mind always judges something new based on its comparison with similar things that are already known. Therefore, literary comparisons are always clear and convincing. In our daily lives, we are constantly forced to compare different things in terms of quantity, quality, or other aspects. It is known that comparisons are used in literature in order for speech to be clear and effective, but when these comparisons are used in everyday speech, it is in order to convey the meaning directly and quickly, because many of these expressions used daily are comparisons. In our research, we discussed this comparison as a means of metaphor and expression in Russia
... Show MoreThis work focuses on the preparation of pure nanocrystalline SnO2 and SnO2:Cu thin films on cleaned glass substrates utilizing a sol-gel spin coating and chemical bath deposition (CBD) procedures. The primary aim of this study is to investigate the possible use of these thin films in the context of gas sensor applications. The films underwent annealing in an air environment at a temperature of 500 ◦C for duration of 60 minutes. The thickness of the film that was deposited may be estimated to be around 300 nm. The investigation included an examination of the structural, optical, electrical, and sensing characteristics, which were explored across various preparation circumstances, specifically focusing on varied
... Show MoreThin films of (CuO)x(ZnO)1-x composite were prepared by pulsed laser deposition technique and x ratio of 0≤ x ≤ 0.8 on clean corning glass substrate at room temperatures (RT) and annealed at 373 and 473K. The X-ray diffraction (XRD) analysis indicated that all prepared films have polycrystalline nature and the phase change from ZnO hexagonal wurtzite to CuO monoclinic structure with increasing x ratio. The deposited films were optically characterized by UV-VIS spectroscopy. The optical measurements showed that (CuO)x(ZnO)1-x films have direct energy gap. The energy band gaps of prepared thin films
L-Phenylalanine amino acid was condensed with 2-hydroxybezaldehyde to give the Schiff base sodium 2-(2-hydroxybenzylideneamino)-3-phenylpropanoate, which was used as a precursor [NaHL]. The precursor was reacted with 1,2-dichloroethane to give the Schiff base sodium 2,2'-(2,2'-(ethane-1,2diylbis(oxy))bis(2,1-phenylene))bis(methan-1-yl-1-ylidene)bis(azan1-yl-1-ylidene)bis(3-phenyl propanoate), which was used as a ligand [Na2L], in complexation with some metal (II) chloride MCl2, where [M= Co(II), Ni(II), Cu(II) and Zn(II)], to give [M(L)] complexes. The [Na2L] ligand and All complexes were characterized by spectroscopic methods, [FTIR, UV-Vis, atomic absorption], melting point, chloride content, conductivity and magnetic susceptibi
... Show MoreThe research includes the synthesis and identification of the mixed ligands complexes of M(II) Ions in general composition [M(Lyn)2(phen)] Where L- lysine (C6H14N2O2) commonly abbreviated (LynH) as a primary ligand and 1,10-phenanthroline(C12H8N2) commonly abbreviated as "phen," as a secondary ligand . The ligands and the metal chlorides were brought in to reaction at room temperature in ethanol as solvent. The reaction required the following molar ratio [(1:1:2) (metal): phen:2 Lyn -] with M(II) ions, were M = Mn(II),Cu(II), Ni(II), Co(II), Fe(II) and Cd(II). Our research also includes studying the bio–activity of the some complexes prepared against pathogenic bacteria Escherichia coli(-),Staphylococcus(-) , Pseudomonas (-), Bacillus (-)
... Show MoreNew Schiff base ligand 2-((4-amino-5-(3, 4, 5-trimethoxybenzyl) pyrimidin- 2-ylimino) (phenyl)methyl)benzoic acid] = [HL] was synthesized using microwave irradiation trimethoprim and 2-benzoyl benzoic acid. Mixed ligand complexes of Mn((ІІ), Co(ІІ), Ni(ІІ), Cu(ІІ), Zn(ІІ) and Cd(ІІ) are reacted in ethanol with Schiff base ligand [HL] and 8-hydroxyquinoline [HQ] then reacted with metal salts in ethanol as a solvent in (1:1:1) ratio. The ligand [HL] is characterized by FTIR, UV-Vis, melting point, elemental microanalysis (C.H.N), 1H-NMR, 13C-NMR, and mass spectra. The mixed ligand complexes are characterized by infrared spectra, electronic spectra, (C.H.N), melting point, atomic absorption, molar conductance and magnetic moment me
... Show More