Globally, buildings use about 40% of energy. Many elements, such as the physical properties of the structure, the efficiency of the cooling and heating systems, the activity of the occupants, and the building’s sustainability, affect the energy consumption of a building. It is really difficult to predict how much energy a building will need. To improve the building’s sustainability and create sustainable energy sources to reduce carbon dioxide emissions from fossil fuel combustion, estimating the building's energy use is necessary. This paper explains the energy consumed in the lecture building of the Al-Khwarizmi College of Engineering, University of Baghdad (UOB), Baghdad, Iraq. The weather data and the building construction information were collected for a specific period and put into a specific data set. That data was used to find the value of energy consumption in the building using artificial intelligence and data analysis. A Python library called Scikit-learn is used to implement machine learning algorithms. In particular, the Multi-layer Perceptron regressor (MLPRegressor) algorithm was used to predict the consumption. The importance of this work lies in predicting the amount of energy consumed. The outcomes of this work can be used to predict the energy consumed by any building before it is built. The used methodology shows the ability to predict energy performance in educational buildings using previous results and train the model on them, and prediction accuracy depends on the amount of data available for the training in artificial intelligence (AI) steps to give the highest accuracy. The prediction was checked using root-mean-square error (RMSE) and coefficient of determination (R²) and we arrived at 0.16 and 0.97 for RMSE and R², respectively.
Statistical learning theory serves as the foundational bedrock of Machine learning (ML), which in turn represents the backbone of artificial intelligence, ushering in innovative solutions for real-world challenges. Its origins can be linked to the point where statistics and the field of computing meet, evolving into a distinct scientific discipline. Machine learning can be distinguished by its fundamental branches, encompassing supervised learning, unsupervised learning, semi-supervised learning, and reinforcement learning. Within this tapestry, supervised learning takes center stage, divided in two fundamental forms: classification and regression. Regression is tailored for continuous outcomes, while classification specializes in c
... Show MoreThe recent study was conducted to measure some heavy metal content in potato and corn chips in Baghdad markets. Samples were analyzed by Atomic Absorption Spectrophotometer (AAS). Four metals, Cobalt (Co), Cadmium (Cd), Cupper (Cu) and Lead (Pb) were determined. Two types belonging to two manufacturer resources and two trademarks for each resource were tested in this work. Generally, the study recorded that the potato chips were containing metals less than the corn chips. According to Iraqi criteria, all tested types of potato chips were under the allowed levels. The mean of accumulation trend for both types was: Cu>Co>Pb>Cd. The mean of accumulation trend for the corn types of chips was: Baz>Pufack> Fantasia > Snack. T
... Show MoreThis research aims to study the degree to which human resources re-engineering programs contribute to enhancing the morale of employees , as it constitutes re-HR Software Engineering contemporary trend to redesign activities and tasks that can HR do a way that helps their organization to achieve its goals as part of the operating environment including dealing with all activities related variables, and the promotion of workers' morale is one of the selections that have to be addressed so that the senior management helps the organization to invest their human resources best possible way as posing the most valuable and rarest of resources enjoyed by comparison with her competitors.
The research problem has
... Show MoreThis paper uses Artificial Intelligence (AI) based algorithm analysis to classify breast cancer Deoxyribonucleic (DNA). Main idea is to focus on application of machine and deep learning techniques. Furthermore, a genetic algorithm is used to diagnose gene expression to reduce the number of misclassified cancers. After patients' genetic data are entered, processing operations that require filling the missing values using different techniques are used. The best data for the classification process are chosen by combining each technique using the genetic algorithm and comparing them in terms of accuracy.
A study was conducted at the University of Baghdad-College of Agricultural Engineering Sciences - Department of Agricultural Machinery and Equipment for the agricultural season 2023 with the aim of designing, manufacturing and testing a machine used to planting agricultural nursery tray with different types of vegetable or horticultural seeds or forest seeds of various forms, and using different agricultural media where they are conducted The planting process is by pulling the seeds with a negative pressure vacuum system, and then they are feding to the dishes in their right place to complete the planting process. The study included three factors: The speed of the main belt in three l
The recent advancements in security approaches have significantly increased the ability to identify and mitigate any type of threat or attack in any network infrastructure, such as a software-defined network (SDN), and protect the internet security architecture against a variety of threats or attacks. Machine learning (ML) and deep learning (DL) are among the most popular techniques for preventing distributed denial-of-service (DDoS) attacks on any kind of network. The objective of this systematic review is to identify, evaluate, and discuss new efforts on ML/DL-based DDoS attack detection strategies in SDN networks. To reach our objective, we conducted a systematic review in which we looked for publications that used ML/DL approach
... Show MoreDiabetes is one of the increasing chronic diseases, affecting millions of people around the earth. Diabetes diagnosis, its prediction, proper cure, and management are compulsory. Machine learning-based prediction techniques for diabetes data analysis can help in the early detection and prediction of the disease and its consequences such as hypo/hyperglycemia. In this paper, we explored the diabetes dataset collected from the medical records of one thousand Iraqi patients. We applied three classifiers, the multilayer perceptron, the KNN and the Random Forest. We involved two experiments: the first experiment used all 12 features of the dataset. The Random Forest outperforms others with 98.8% accuracy. The second experiment used only five att
... Show More