Globally, buildings use about 40% of energy. Many elements, such as the physical properties of the structure, the efficiency of the cooling and heating systems, the activity of the occupants, and the building’s sustainability, affect the energy consumption of a building. It is really difficult to predict how much energy a building will need. To improve the building’s sustainability and create sustainable energy sources to reduce carbon dioxide emissions from fossil fuel combustion, estimating the building's energy use is necessary. This paper explains the energy consumed in the lecture building of the Al-Khwarizmi College of Engineering, University of Baghdad (UOB), Baghdad, Iraq. The weather data and the building construction information were collected for a specific period and put into a specific data set. That data was used to find the value of energy consumption in the building using artificial intelligence and data analysis. A Python library called Scikit-learn is used to implement machine learning algorithms. In particular, the Multi-layer Perceptron regressor (MLPRegressor) algorithm was used to predict the consumption. The importance of this work lies in predicting the amount of energy consumed. The outcomes of this work can be used to predict the energy consumed by any building before it is built. The used methodology shows the ability to predict energy performance in educational buildings using previous results and train the model on them, and prediction accuracy depends on the amount of data available for the training in artificial intelligence (AI) steps to give the highest accuracy. The prediction was checked using root-mean-square error (RMSE) and coefficient of determination (R²) and we arrived at 0.16 and 0.97 for RMSE and R², respectively.
Background: Adipose derived-mesenchymal stem cells have been used as an alternative to bone marrow cells in this study. Objective: We investigated the in vitro isolation, identification, and differentiation of stem cells into neuron cells, in order to produce neuron cells via cell culture, which would be useful in nerve injury treatment. Method: Mouse adipose mesenchymal stem cells were dissected from the abdominal subcutaneous region. Neural differentiation was induced using β-mercaptoethanol. This study included two different neural stage markers, i.e. nestin and neurofilament light-chain, to detect immature and mature neurons, respectively. Results: The immunocytochemistry results showed that the use of β-mercaptoethanol resulted in
... Show MorePurpose: To evaluate the effect of different surface treatments on shear bond strength between dentin and IPS e.max lithium disilicate glass-ceramic. Materials and Methods: Eighteen extracted third molars were embeded in epoxy resin. The tooth was sectioned vertically in mesiodistal direction using a low speed hard tissue microtome. The buccal and lingual surfaces of each section were ground flat using 600 grit Silicone carbide paper. Eighteen ceramic discs consisted of lithium disilicate glass-ceramic were prepared with a diameter of 4.7mm and height of 2.2mm. The discs were divided in two groups (n=10): (1) IPS e.max treated with hydrofluoric acid and Monobond Plus (MBP) and (2) IPS e.max treated with Monobond Etch &Prime (MBEP). The toot
... Show MoreThis research includes the synthesis of some new different heterocyclic derivatives of 5-Bromoisatin. New sulfonylamide, diazine, oxazole, thiazole and 1,2,3-triazole derivatives of 5-Bromoisatin have been synthesized. The synthesis process started by the reaction of 5-Bromoisatin with different reagents to obtain schiff bases of 5-Bromoisatin intermediate compounds(1, 8, 19) by using glacial acetic acid as a catalyst in three routes. The first route, 5-Bromoisatin reacted with p-aminosulfonylchloride to product compound(1), then converted to sulfonyl amide derivatives(2-7) by the reaction of compound(1) with different substituted primary aromatic amine in absolute ethanol. The second route includes the reaction of 5-Bromoisatin rea
... Show MoreSoil improvement has developed as a realistic solution for enhancing soil properties so that structures can be constructed to meet project engineering requirements due to the limited availability of construction land in urban centers. The jet grouting method for soil improvement is a novel geotechnical alternative for problematic soils for which conventional foundation designs cannot provide acceptable and lasting solutions. The paper's methodology was based on constructing pile models using a low-pressure injection laboratory setup built and made locally to simulate the operation of field equipment. The setup design was based on previous research that systematically conducted unconfined compression testing (U.C.Ts.). Th
... Show MoreThe adequacy of diagnostic tests, together with trichomoniasis associated clinical symptoms, were investigated in females suffering vaginitis, and they were referred to the Gynecology Department, Al-Yarmouk Teaching Hospital during the period December 2004 – June 2005. The total number of patients was 250 cases (age range: 18 - 52 years), and each patient was examined using a sterile speculum to obtain vaginal swabs for examination. The diagnosis with T. vaginalis was done in many methods. The direct methods included wet and stained (Leishman's stain) examinations and cultivation in different culture media (Kupferberg Trichomonas Broth Base;, Trichomonas Agar Base; TAB and Trichomonas Modified CPLM), while the indirect methods were serol
... Show MoreIn this work, nanostructure zinc sulfide (ZnS) thin films at temperature of substrate 450 oC and thickness (120) nm have been produced by chemical spray pyrolysis method. The X-Ray Diffraction (XRD) measurements of the film showed that they have a polycrystalline structure and possessed a hexagonal phase with strong crystalline orientation of (103). The grain size was measured using scanning electron microscope (SEM) which was approximately equal to 80 nm. The linear optical measurements showed that ZnS nanostructure has direct energy gap. Nonlinear optical properties experiments were performed using Q-switched 532 nm Nd:YAG laser Z-scan system. The nonlinear refractive index (n2) and nonlinear absorption coefficient (β) estimated for Z
... Show MoreGH and IGF-2 were examined histologically in the present study on adult hens to learn more about the organs’ responses to GH and IGF-2. Cardiac protein synthesis is stimulated by GH and IGF-2, according to microscopic examination. The recent research found a considerable amount of adipose tissue in the cardiac muscle bundles, which is linked to the metabolic process. In addition, GH and IGF-2 were shown to promote protein synthesis and mitosis in liver and gizzard tissues, according to the research. In addition, the apoptosis, regeneration, and secretory activity of gizzard glands are increased by the aforementioned hormones.
The influence of dye laser Rhodamine 6G (R6G) on the molecular structure of silica aerogel prepared by normal drying method is reported. The study also tests the effect of dye concentration on morphological and physical properties. Fourier Transform Infrared Spectroscopy (FTIR) was used to examine this effect, in addition to Field Emission Scanning Electron Microscopy (FESEM), contact angle, and surface area measurement. It was found from FTIR data that the dye laser stays with the inner structure of samples and, at high concentration, it gives a good influence by reducing (OH) band and increasing (CH) band, leading to changing the contact angle from (123á´¼) to (145á´¼). Whereas particle size varied from 22 n
... Show More