Globally, buildings use about 40% of energy. Many elements, such as the physical properties of the structure, the efficiency of the cooling and heating systems, the activity of the occupants, and the building’s sustainability, affect the energy consumption of a building. It is really difficult to predict how much energy a building will need. To improve the building’s sustainability and create sustainable energy sources to reduce carbon dioxide emissions from fossil fuel combustion, estimating the building's energy use is necessary. This paper explains the energy consumed in the lecture building of the Al-Khwarizmi College of Engineering, University of Baghdad (UOB), Baghdad, Iraq. The weather data and the building construction information were collected for a specific period and put into a specific data set. That data was used to find the value of energy consumption in the building using artificial intelligence and data analysis. A Python library called Scikit-learn is used to implement machine learning algorithms. In particular, the Multi-layer Perceptron regressor (MLPRegressor) algorithm was used to predict the consumption. The importance of this work lies in predicting the amount of energy consumed. The outcomes of this work can be used to predict the energy consumed by any building before it is built. The used methodology shows the ability to predict energy performance in educational buildings using previous results and train the model on them, and prediction accuracy depends on the amount of data available for the training in artificial intelligence (AI) steps to give the highest accuracy. The prediction was checked using root-mean-square error (RMSE) and coefficient of determination (R²) and we arrived at 0.16 and 0.97 for RMSE and R², respectively.
The aim of the current research is to reveal the effect of using brain-based learning theory strategies on the achievement of Art Education students in the subject of Teaching Methods. The experimental design with two equal experimental and control groups was used. The experimental design with two independent and equal groups was used, and the total of the research sample was (60) male and female students, (30) male and female students represented the experimental group, and (30) male and female students represented the control group. The researcher prepared the research tool represented by the cognitive achievement test consisting of (20) questions, and it was characterized by honesty and reliability, and the experiment lasted (6) weeks
... Show MoreThis paper aims to evaluate large-scale water treatment plants’ performance and demonstrate that it can produce high-level effluent water. Raw water and treated water parameters of a large monitoring databank from 2016 to 2019, from eight water treatment plants located at different parts in Baghdad city, were analyzed using nonparametric and multivariate statistical tools such as principal component analysis (PCA) and hierarchical cluster analysis (HCA). The plants are Al-Karkh, Sharq-Dijlah, Al-Wathba, Al-Qadisiya Al-Karama, Al-Dora, Al-Rasheed, Al-Wehda. PCA extracted six factors as the most significant water quality parameters that can be used to evaluate the variation in drinkin
Sediment accumulated in sewers is a major concern source as it induces numerous operational and environmental problems. For instance, during wet weather flow, the re-suspension of this sediment accompanied by the combined sewer overflow may cause huge pollutant load to the receiving water body. The characteristics of the sewer sediment are important as it shapes its behaviour and determines the extent of the pollution load. In this paper, an investigation of sewer sediment and its characterization is done for a case study in Baghdad city. Sediment depth covers more than 50% of the sewer cross-sectional area; several operational causes are comprised to cause this huge depths of sediment depositions. The testing and analysis of the s
... Show MoreThe aim of this research sought to assess the background radiati on levels of medicinal plant samples in Iraq.The D, AED, and ELCRThe D values are 0.164 ± 0.006 µSv/h.The radiation dose outputs from the afore mentioned research were juxtaposed with the safety threshold of 0.247 µSv/h set by the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) in 2008 and the National Council on Radiation Pr otection and Measurements (NCRP) in 2009.The radiation exposure for all samples in this investigation is within the permissible limits.Additionally, t he AED values obtained from microsieverts per hour are (1.31 ±0.0326 mS v/y), indicating variability, with a maximum permissible limit of 2.4 mSv/y ear, as per t
... Show MoreA Wearable Robotic Knee (WRK) is a mobile device designed to assist disabled individuals in moving freely in undefined environments without external support. An advanced controller is required to track the output trajectory of a WRK device in order to resolve uncertainties that are caused by modeling errors and external disturbances. During the performance of a task, disturbances are caused by changes in the external load and dynamic work conditions, such as by holding weights while performing the task. The aim of this study is to address these issues and enhance the performance of the output trajectory tracking goal using an adaptive robust controller based on the Radial Basis Function (RBF) Neural Network (NN) system and Hamilton
... Show MoreThe deep learning algorithm has recently achieved a lot of success, especially in the field of computer vision. This research aims to describe the classification method applied to the dataset of multiple types of images (Synthetic Aperture Radar (SAR) images and non-SAR images). In such a classification, transfer learning was used followed by fine-tuning methods. Besides, pre-trained architectures were used on the known image database ImageNet. The model VGG16 was indeed used as a feature extractor and a new classifier was trained based on extracted features.The input data mainly focused on the dataset consist of five classes including the SAR images class (houses) and the non-SAR images classes (Cats, Dogs, Horses, and Humans). The Conv
... Show MoreImage classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show MoreImage classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show MoreDistributed Denial of Service (DDoS) attacks on Web-based services have grown in both number and sophistication with the rise of advanced wireless technology and modern computing paradigms. Detecting these attacks in the sea of communication packets is very important. There were a lot of DDoS attacks that were directed at the network and transport layers at first. During the past few years, attackers have changed their strategies to try to get into the application layer. The application layer attacks could be more harmful and stealthier because the attack traffic and the normal traffic flows cannot be told apart. Distributed attacks are hard to fight because they can affect real computing resources as well as network bandwidth. DDoS attacks
... Show More: Summary Iraq suffered under the British administration during the First World War and its entry into an occupation of economic backwardness, and this economic backwardness was linked to the phenomenon of linking Iraq economically to the capitalist world by keeping it as a source of raw materials and a market for capitalist goods, and that the occupation authorities controlled Iraq's economic goods and wealth and mocked them to serve its interests and achieve their political and economic goals that it drew before the war.