Globally, buildings use about 40% of energy. Many elements, such as the physical properties of the structure, the efficiency of the cooling and heating systems, the activity of the occupants, and the building’s sustainability, affect the energy consumption of a building. It is really difficult to predict how much energy a building will need. To improve the building’s sustainability and create sustainable energy sources to reduce carbon dioxide emissions from fossil fuel combustion, estimating the building's energy use is necessary. This paper explains the energy consumed in the lecture building of the Al-Khwarizmi College of Engineering, University of Baghdad (UOB), Baghdad, Iraq. The weather data and the building construction information were collected for a specific period and put into a specific data set. That data was used to find the value of energy consumption in the building using artificial intelligence and data analysis. A Python library called Scikit-learn is used to implement machine learning algorithms. In particular, the Multi-layer Perceptron regressor (MLPRegressor) algorithm was used to predict the consumption. The importance of this work lies in predicting the amount of energy consumed. The outcomes of this work can be used to predict the energy consumed by any building before it is built. The used methodology shows the ability to predict energy performance in educational buildings using previous results and train the model on them, and prediction accuracy depends on the amount of data available for the training in artificial intelligence (AI) steps to give the highest accuracy. The prediction was checked using root-mean-square error (RMSE) and coefficient of determination (R²) and we arrived at 0.16 and 0.97 for RMSE and R², respectively.
Background: The treatment of dental tissues proceeding to adhesive procedures is a crucial step in the bonding protocol and decides the clinical success ofrestorations. This study was conducted in vitro, with the aim of evaluating thenanoleakage on the interface between the adhesive system and the dentine treated by five surface modalities using scanning electron microscopy and energydispersiveX-ray spectrometry. Materials and methods: Twenty five extracted premolars teeth were selected in the study. Standardized class V cavities were prepared on the buccal and lingual surfaces then the teeth divided into five main groups of (5 teeth in each group n=10) according to the type of dentine surface treatment that was used: Group (A): dentine was
... Show MoreThe wound healing process is incredibly intricate, consisting of a series of cellular activities. Although, this complex process has the potential to degenerate and result in chronic wound problems that are resistant to biological healing mechanisms. Nanoparticles can help to reduce inflammation, promote tissue regeneration, and accelerate wound healing. The proteolytic enzymes are believed to break down proteins and other molecules that can cause inflammation and impede the healing process. Wound was created in vivo using adult mice, and by taking blood samples the hematological parameters were evaluated to detected the effects of bromelain, silver nanoparticles and Br-AgNPs. The results shows an increased in white blood cells WBC, RBC, MC
... Show MoreBackground: Osteoarthritis is a complicated, chronic disorder of cartilage and bone, associated with homeostasis of bio-elements. The current study aims to assess the role of serum progranulin levels among Iraqi patients with knee osteoarthritis. Patients and Methods: The study encompassed 50 patients aged 52.50 ± 3.12 years (25 males and 25 females), admitted to the at the Baghdad Medical City through the period from November 2021 to March 2022. All individuals were identified by physicians in a Rheumatology and Rehabilitation Outpatient Clinic and the clinical data was collected along with the assess¬ment of biochemical parameters. Fasting serum glucose, lipid profile, calcium, magnesium, alkaline phosphatase, vitamin D3, and p
... Show More