A field experiment was conducted in an agricultural field in Al-Hindia district, Karbala governorate in a silty clay soil during the year 2020. The research included a study of two factors, the first is the depth of plowing at two levels, namely 13 and 20 cm, which represented the main blocks. The second is the tire inflation pressure at two levels, namely (70 and 140 kPa), which represented the secondary blocks. Slippage percentage, field efficiency, leaf area, and 300 grain weight were studied. The experiment was carried out using a split-plot system under a Randomized complete block design, at three replications. The tillage depth of 13 cm exceeds/transcend by giving it the least slippage of (11.01%), the highest field efficiency of (50.09%) and the largest leaf area of (0.48 cm2 ). The tire pressure of 70 kPa obtained the highest field efficiency of (47.79%) and the largest paper area of (0.47 cm2 ). Tire pressure 140 kPa, exceeds / transcends in recording the minimal slippage of (11.39%). As for the bilateral interaction, it impacted all the studied traits except for the weight of (300) grains
This paper presents a method to organize memory chips when they are used to build memory systems that have word size wider than 8-bit. Most memory chips have 8-bit word size. When the memory system has to be built from several memory chips of various sizes, this method gives all possible organizations of these chips in the memory system. This paper also suggests a precise definition of the term “memory bank” that is usually used in memory systems. Finally, an illustrative design problem was taken to illustrate the presented method practically.
In this work, enhancement to the fluorescence characteristics of laser dye solutions hosting highly-pure titanium dioxide nanoparticles as random gain media. This was achieved by coating two opposite sides of the cells containing these media with nanostructured thin films of highly-pure titanium dioxide. Two laser dyes; Rhodamine B and Coumarin 102, were used to prepare solutions in hexanol and methanol, respectively, as hosts for the nanoparticles. The nanoparticles and thin films were prepared by dc reactive magnetron sputtering technique. The enhancement was observed by the narrowing of fluorescence linewidth as well as by increasing the fluorescence intensity. These parameters were compared to those of the dye only and the dye solution
... Show MoreThe extraction of Eucalyptus oil from Iraqi Eucalyptus Camadulensis leaves was studded using water distillation methods. The amount of Eucalyptus oil has been determined in a variety of extraction temperature and agitation speed. The effect of water to Eucalyptus leaves (solvent to solid) ratio and particle size of Eucalyptus leaves has been studied in order to evaluate the amount of Eucalyptus oil. The optimum experimental condition for the Eucalyptus oil extraction was established as follows: 100˚C extraction temperature, 200 rpm agitation speed; 0.5 cm leave particle size and 6:1 ml: g amount of water to eucalyptus leaves Ratio.
Improving" Jackknife Instrumental Variable Estimation method" using A class of immun algorithm with practical application
In the present study, the influence of various solvents on UV-VIS absorption spectra of N,N-Bis(salicylidene)ethylenediamine (Salen) has been investigated. Salen ligand has two absorption maxima (around 260 and 320 nm). To explain the obtained spectra, the frequencies and molar absorptivity values were combined with solvent properties using a total solvatochromic equation suggested by the Kamlet and Taft. The multiparametric examination denotes that non-specific dipolar interactions of the solvents (π*) with the solute play a significant role in absorption maxima in pure solvents. The ionization constant (pKa) of salen in methanol has been determined by spectrophotometric measurements. Two graphical methods have been applied
... Show MoreThis study included the isolation and identification of Aspergillus flavus isolates associated with imported American rice grains and local corn grains which collected from local markets, using UV light with 365 nm wave length and different media (PDA, YEA, COA, and CDA ). One hundred and seven fungal isolates were identified in rice and 147 isolates in corn.4 genera and 7 species were associated with grains, the genera were Aspergillus ,Fusarium ,Neurospora ,Penicillium . Aspergillus was dominant with occurrence of 0.47% and frequency of 11.75% in rice grains whereas in corn grains the genus Neurospora was dominant with occurrence of 1.09% and frequency 27.25% ,results revealed that 20 isolates out of 50 A. flavus isolates were able
... Show MoreIn this research, design of advanced material for sunlight conversion requires focused research to obtain efficient photocatalytic system. Nanostructured ZnO was synthesized using spin coating technique. The structural, morphological and optical properties of annealed nanostructured ZnO thin film at 390 Co for 3 hours were characterized by x-ray diffraction, atomic force microscope AFM and UV-VIS spectrophotometer. Nanostructured ZnO was applied for removal Methylene Blue (MB) dye from water using sunlight induced photocatalytic process. Overall degradation of MB/ZnO was achieved after 120 minutes of sunlight irradiation while it needs more time for MB alone. The reaction rate constant fit pseudo first order for MB/ZnO degradation was 0.
... Show MoreMechanical degradation hampers the practical usage of polymers for turbulent drag reduction
application. Mechanical degradation refers to the chemical process in which the activation energy of
polymer chain scission is exceeded by mechanical action on the polymer chain, and bond rupture
occurs. When a water-soluble polymer and surfactant are mixed in water solution, the specific structures
(aggregates) are formed, in which polymer film is formed around micelle. In this work, Xanthan gum (XG) –
Sodium lauryl ether sulfate (SELS) complex formation and its effect on percentage viscosity reduction
(%VR) was studied. It was found that SELS surfactant reduced the mechanical degradation of XG much
more efficiently than th
Polarization modulation plays an important role in polarization encoding in quantum key distribution. By using polarization modulation, quantum key distribution systems become more compact and more vulnerable as one laser source is used instead of using multiple laser sources that may cause side-channel attacks. Metasurfaces with their exceptional optical properties have led to the development of versatile ultrathin optical devices. They are made up of planar arrays of resonant or nearly resonant subwavelength pieces and provide complete control over reflected and transmitted electromagnetic waves opening several possibilities for the development of innovative optical components. In this work, the Si nanowire metasurface grating polarize
... Show More