Cerium oxide CeO2, or ceria, has gained increasing interest owing to its excellent catalytic applications. Under the framework of density functional theory (DFT), this contribution demonstrates the effect that introducing the element nickel (Ni) into the ceria lattice has on its electronic, structural, and optical characteristics. Electronic density of states (DOSs) analysis shows that Ni integration leads to a shrinkage of Ce 4f states and improvement of Ni 3d states in the bottom of the conduction band. Furthermore, the calculated optical absorption spectra of an Ni-doped CeO2 system shifts towards longer visible light and infrared regions. Results indicate that Ni-doping a CeO2 system would result in a decrease of the band gap. Finally, Mulliken's charge transfer of the Ce1−xNixO2 system exhibits an ionic bond between Ce or Ni and O, and covalent bonds between Ce and Ni atoms. The analysis of absorption spectra demonstrates that Ni-doped CeO2 is a material with potential use in photocatalytic, photovoltaic, and solar panels.
AlO-doped ZnO nanocrystalline thin films from with nano crystallite size in the range (19-15 nm) were fabricated by pulsed laser deposition technique. The reduction of crystallite size by increasing of doping ratio shift the bandgap to IR region the optical band gap decreases in a consistent manner, from 3.21to 2.1 eV by increasing AlO doping ratio from 0 to 7wt% but then returns to grow up to 3.21 eV by a further increase the doping ratio. The bandgap increment obtained for 9% AlO dopant concentration can be clarified in terms of the Burstein–Moss effect whereas the aluminum donor atom increased the carrier's concentration which in turn shifts the Fermi level and widened the bandgap (blue-shift). The engineering of the bandgap by low
... Show MoreAbstract : Tin oxide SnO2 films were prepared by atmospheric chemical vapor deposition (APCVD) technique. Our study focus on prepare SnO2 films by using capillary tube as deposition nozzle and the effect of these tubes on the structural properties and optical properties of the prepared samples. X-ray diffraction (XRD) was employed to find the crystallite size. (XRD) studies show that the structure of a thin films changes from polycrystalline to amorphous by increasing the number of capillary tubes used in sample preparation. Maximum transmission can be measured is (95%) at three capillary tube. (AFM) where use to analyze the morphology of the tin oxides surface. Roughness and average grain size for different number of capillary tubes have b
... Show MoreIn this paper, we focused on the investigated and studied the cold fusion reaction rate for D-D using the theory of Bose-Einstein condensation and depending on the quantum mechanics consideration. The quantum theory was based on the concept of single conventional of deuterons in Nickel-metal due to Bose-Einstein condensation, it has supplied a consistent description and explained of the experimental data. The analysis theory model has capable of explaining the physical behaviour of deuteron induced nuclear reactions in Nickel metals upon the five-star matter, it's the most expected for a quantitative predicted of the physical theory. Based on the Bose-Einstein condensation theorem formulation, we calculation the cold fusion reaction rate fo
... Show MoreThe Films of CdTe:Zn were prepared on a glass by using vacuum vapor deposition technique .The x-ray diffraction pattern revealed that the films have polycrystalline with FCC structure and the preferred orientation was along (111) plane. The films were exposed to a low dose of gamma ray.(5µCi for 30 days) Transmission and absorptance spectra were recorded in the range of (400-1100) nm before and after irradiation. It was found that irradiation has a clear effect on the optical and structural properties which include the transmition and absorption spectra, extinction coefficient, refractive index, and the energy gap.