Preferred Language
Articles
/
vhaLVocBVTCNdQwCpkZu
The Local Bifurcation of an Eco-Epidemiological Model in the Presence of Stage- Structured with Refuge
...Show More Authors

In this paper, we establish the conditions of the occurrence of the local bifurcations, such as saddle node, transcritical and pitchfork, of all equilibrium points of an eco-epidemiological model consisting of a prey-predator model with SI (susceptible-infected) epidemic diseases in prey population only and a refuge-stage structure in the predators. It is observed that there is a transcritical bifurcation near the axial and free predator equilibrium points, near disease-free equilibrium point is a saddle-node bifurcation and near positive (coexistence) equilibrium point is a saddle-node bifurcation, a transcritical bifurcation and a pitchfork bifurcation. Further investigations for Hopf bifurcation near coexistence equilibrium point are carried out. Finally, numerical simulations are used to illustrate the occurrence of the local bifurcations of this model.  

Crossref
Publication Date
Sat May 01 2021
Journal Name
Journal Of Physics: Conference Series
The Bifurcation Analysis of Food Web Prey- Predator Model with Toxin
...Show More Authors
Abstract<p>Local and global bifurcations of food web model consists of immature and mature preys, first predator, and second predator with the current of toxicity and harvesting was studied. It is shown that a trans-critical bifurcation occurs at the equilibrium point <italic>E</italic> <sub>0</sub>, and it revealed the existence of saddle-node bifurcation occurred at equilibrium points <italic>E</italic> <sub>1</sub>, <italic>E</italic> <sub>2</sub> and <italic>E</italic> <sub>3</sub>. At any point, the occurrence of bifurcation of the pitch for</p> ... Show More
View Publication
Scopus Crossref
Publication Date
Sun Jan 01 2023
Journal Name
Communications In Mathematical Biology And Neuroscience
The dynamics of a delayed ecological model with predator refuge and cannibalism
...Show More Authors

This study has contributed to understanding a delayed prey-predator system involving cannibalism. The system is assumed to use the Holling type II functional response to describe the consuming process and incorporates the predator’s refuge against the cannibalism process. The characteristics of the solution are discussed. All potential equilibrium points have been identified. All equilibrium points’ local stability analyses for all time delay values are investigated. The system exhibits a Hopf bifurcation at the coexistence equilibrium, which is further demonstrated. The center manifold and normal form theorems for functional differential equations are then used to establish the direction of Hopf bifurcation and the stability of the per

... Show More
View Publication Preview PDF
Scopus Clarivate Crossref
Publication Date
Mon Mar 01 2021
Journal Name
Journal Of Physics: Conference Series
The Bifurcation Analysis and Persistence of the Food Chain Ecological Model with Toxicant
...Show More Authors
Abstract<p>In this work, the occurrence conditions of both local Bifurcation and persistence were studied, Saddle-node bifurcation appears near fourth point, near the first point, the second point and the third point a transcritical bifurcation occurred but no pitchfork bifurcation happened near any of the four equilibrium points. In addition to study conditions for Hopf-bifurcation near positive stable point that is the fourth point. Besides discuss persistence occurrence as globally property of the food chain of three species include prey, first predator and top predator with impact of toxin in all species and harvesting effect on the predator’s only. Numerical results for the set of hypothe</p> ... Show More
View Publication
Crossref
Publication Date
Mon Apr 04 2022
Journal Name
Communications In Mathematical Biology And Neuroscience
Stability and bifurcation of a prey-predator system incorporating fear and refuge
...Show More Authors

It is proposed and studied a prey-predator system with a Holling type II functional response that merges predation fear with a predator-dependent prey's refuge. Understanding the impact of fear and refuge on the system's dynamic behavior is one of the objectives. All conceivable steady-states are investigated for their stability. The persistence condition of the system has been established. Local bifurcation analysis is performed in the Sotomayor sense. Extensive numerical simulation with varied parameters was used to explore the system's global dynamics. A limit cycle and a point attractor are the two types of attractors in the system. It's also interesting to note that the system exhibits bi-stability between these 2 types of attractors.

... Show More
View Publication Preview PDF
Scopus (10)
Scopus Clarivate Crossref
Publication Date
Tue Jan 16 2024
Journal Name
International Journal Of Analysis And Applications
Fear and Hunting Cooperation's Impact on the Eco-Epidemiological Model's Dynamics
...Show More Authors

Due to the fact that living organisms do not exist individually, but rather exist in clusters interacting with each other, which helps to spread epidemics among them. Therefore, the study of the prey-predator system in the presence of an infectious disease is an important topic because the disease affects the system's dynamics and its existence. The presence of the hunting cooperation characteristic and the induced fear in the prey community impairs the growth rate of the prey and therefore affects the presence of the predator as well. Therefore, this research is interested in studying an eco-epidemiological system that includes the above factors. Therefore, an eco-epidemiological prey-predator model incorporating predation fear and

... Show More
View Publication
Scopus (1)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Sun Jan 30 2022
Journal Name
Iraqi Journal Of Science
Global Stability of an epidemic model with vaccine involving stage structure
...Show More Authors

In this paper a mathematical model that analytically as well as numerically
the flow of infection disease in a population is proposed and studied. It is
assumed that the disease divided the population into five classes: immature
susceptible individuals (S1) , mature individuals (S2 ) , infectious individual
(I ), removal individuals (R) and vaccine population (V) . The existence,
uniqueness and boundedness of the solution of the model are discussed. The
local and global stability of the model is studied. Finally the global dynamics of
the proposed model is studied numerically.

View Publication Preview PDF
Publication Date
Sat Apr 01 2023
Journal Name
Journal Of Environmental Accounting And Management
On the Food Chain Model with Sokol Howell Functional Response and Prey Refuge
...Show More Authors

The cheif aim of the present investigation is to develop Leslie Gower type three species food chain model with prey refuge. The intra-specific competition among the predators is considered in the proposed model. Besides the logistic growth rate for the prey species, Sokol Howell functional response for predation is chosen for our model formulation. The behaviour of the model system thoroughly analyses near the biologically significant equilibria. The linear stability analysis of the equilibria is carried out in order to examine the response of the system. The present model system experiences Hopf bifurcation depending on the choice of suitable model parameters. Extensive numerical simulation reveals the validity of the proposed model.

Scopus (1)
Scopus Clarivate
Publication Date
Thu Oct 06 2022
Journal Name
Advances In Systems Science And Applications
Stability and Bifurcation of a Delay Cancer Model in the Polluted Environment
...Show More Authors

It is well known that the spread of cancer or tumor growth increases in polluted environments. In this paper, the dynamic behavior of the cancer model in the polluted environment is studied taking into consideration the delay in clearance of the environment from their contamination. The set of differential equations that simulates this epidemic model is formulated. The existence, uniqueness, and the bound of the solution are discussed. The local and global stability conditions of disease-free and endemic equilibrium points are investigated. The occurrence of the Hopf bifurcation around the endemic equilibrium point is proved. The stability and direction of the periodic dynamics are studied. Finally, the paper is ended with a numerical simul

... Show More
View Publication
Scopus (2)
Scopus
Publication Date
Tue Feb 13 2024
Journal Name
Iraqi Journal Of Science
Stability and Bifurcation of Epidemic Model
...Show More Authors

In this paper a mathematical model that describes the flow of infectious disease in a population is proposed and studied. It is assumed that the disease divided the population into four classes: susceptible individuals (S), vaccinated individuals (V), infected individuals (I) and recover individuals (R). The impact of immigrants, vaccine and external sources of disease, on the dynamics of SVIRS epidemic model is studied. The existence, uniqueness and boundedness of the solution of the model are discussed. The local and global stability of the model is studied. The occurrence of local bifurcation as well as Hopf bifurcation in the model is investigated. Finally the global dynamics of the proposed model is studied numerically.

View Publication Preview PDF
Publication Date
Wed Sep 01 2021
Journal Name
Applications And Applied Mathematics: An International Journal (aam)
Stability and Bifurcation of a Cholera Epidemic Model with Saturated Recovery Rate
...Show More Authors

In this paper, a Cholera epidemic model is proposed and studied analytically as well as numerically. It is assumed that the disease is transmitted by contact with Vibrio cholerae and infected person according to dose-response function. However, the saturated treatment function is used to describe the recovery process. Moreover, the vaccine against the disease is assumed to be utterly ineffective. The existence, uniqueness and boundedness of the solution of the proposed model are discussed. All possible equilibrium points and the basic reproduction number are determined. The local stability and persistence conditions are established. Lyapunov method and the second additive compound matrix are used to study the global stability of the system.

... Show More
View Publication