Accurate land use and land cover (LU/LC) classification is essential for various geospatial applications. This research applied a Spectral Angle Mapper (SAM) classifier on the Landsat 7 (ETM+ 2010) & 8 (OLI 2020) satellite scenes to identify the land cover materials of the Shatt al-Arab region which is located in the east of Basra province during ten years with an estimate of the spectral signature using ENVI 5.6 software of each cover with the proportion of its area to the area of the study region and produce maps of the classified region. The bands of these datasets were analyzed using the Optimum Index Factor (OIF) statistic. The highest OIF represents the best and most appropriate band combination calculated for the classification process are (SWIR_2, SWIR_1, Blue) and (SWIR_2, SWIR_1, coastal aerosol) bands combination at (100.236 & 104.154) for ETM+, and OLI datasets, respectively, which adopted to obtain the most accurate interpretation of the land cover. The Landsat 7 (ETM+ 2010) is selected as a reference year to study the change in land cover features through ten years for this region using the novel Scene Optimum Index Factor (SOIF), which was suggested in this research. The amount of change for vegetation cover was 34 %, using the SAM classifier. The urban class was the most stable, and the rate of change was 23 %. The most affected were the water bodies, where the rate of change reached 73% due to the region falling into the tails of rivers, as well as the lack of water discharges coming from neighbouring and upstream countries. The research provides important information about land cover changes over the past decade due to the precise spectral analyses, showing the need for monitoring natural resources, especially in environmentally sensitive areas such as water bodies and vegetation cover. Environmental conservation efforts and continuous planning in affected regions may be supported by these findings.
This paper proposes a new approach, of Clustering Ultrasound images using the Hybrid Filter (CUHF) to determine the gender of the fetus in the early stages. The possible advantage of CUHF, a better result can be achieved when fuzzy c-mean FCM returns incorrect clusters. The proposed approach is conducted in two steps. Firstly, a preprocessing step to decrease the noise presented in ultrasound images by applying the filters: Local Binary Pattern (LBP), median, median and discrete wavelet (DWT), (median, DWT & LBP) and (median & Laplacian) ML. Secondly, implementing Fuzzy C-Mean (FCM) for clustering the resulted images from the first step. Amongst those filters, Median & Lap
This paper proposes a new approach, of Clustering Ultrasound images using the Hybrid Filter (CUHF) to determine the gender of the fetus in the early stages. The possible advantage of CUHF, a better result can be achieved when fuzzy c-mean FCM returns incorrect clusters. The proposed approach is conducted in two steps. Firstly, a preprocessing step to decrease the noise presented in ultrasound images by applying the filters: Local Binary Pattern (LBP), median, median and discrete wavelet (DWT),(median, DWT & LBP) and (median & Laplacian) ML. Secondly, implementing Fuzzy C-Mean (FCM) for clustering the resulted images from the first step. Amongst those filters, Median & Laplace has recorded a better accuracy. Our experimental evaluation on re
... Show MoreCancer stem cells (CSCs) are defined as a population of cells present in tumours, which can undergo self-renewal and differentiation. Identification and isolation of these CSCs using putative surface markers have been a priority of research in cancer. With this background we selected pancreatic normal and tumor cells for this study and passaged them into animal tissue culture medium. Further staining was done using alkaline phosphatase and heamatoxilin staining. Blue to purple colored zones in undifferentiated pluripotent stem cells and clear coloration in the chromatin material indicated pancreatic cells. Further studies on the cell surface marker CD 44 were done using ELISA. For this, the protein was extracted from cultivated normal and t
... Show MoreIn recent years, with the rapid development of the current classification system in digital content identification, automatic classification of images has become the most challenging task in the field of computer vision. As can be seen, vision is quite challenging for a system to automatically understand and analyze images, as compared to the vision of humans. Some research papers have been done to address the issue in the low-level current classification system, but the output was restricted only to basic image features. However, similarly, the approaches fail to accurately classify images. For the results expected in this field, such as computer vision, this study proposes a deep learning approach that utilizes a deep learning algorithm.
... Show MoreAccurate emotion categorization is an important and challenging task in computer vision and image processing fields. Facial emotion recognition system implies three important stages: Prep-processing and face area allocation, feature extraction and classification. In this study a new system based on geometric features (distances and angles) set derived from the basic facial components such as eyes, eyebrows and mouth using analytical geometry calculations. For classification stage feed forward neural network classifier is used. For evaluation purpose the Standard database "JAFFE" have been used as test material; it holds face samples for seven basic emotions. The results of conducted tests indicate that the use of suggested distances, angles
... Show MoreIn this work, satellite images for Razaza Lake and the surrounding area
district in Karbala province are classified for years 1990,1999 and
2014 using two software programming (MATLAB 7.12 and ERDAS
imagine 2014). Proposed unsupervised and supervised method of
classification using MATLAB software have been used; these are
mean value and Singular Value Decomposition respectively. While
unsupervised (K-Means) and supervised (Maximum likelihood
Classifier) method are utilized using ERDAS imagine, in order to get
most accurate results and then compare these results of each method
and calculate the changes that taken place in years 1999 and 2014;
comparing with 1990. The results from classification indicated that
Instruments for the measurements of radon, thoron and its decay
products in air are based mostly on the detection of alpha particles.
The health hazards of radon on general public are well known. In
order to understand the level and distribution of 222Rn concentrations
indoor in Al-Fallujah City; new technique was used, this technique
was three radon–thoron mixed field dosimeters is made up of a twin
chamber cylindrical system and three LR-115 type II detectors were
employed. The aim of this work was to measurement radon gas using
SSNTD technique door in in Al-Fallujah City, and estimation of
excess in cancer due to increment in radon gas. Results for samples
which are collected from January to
Extracorporeal Shock Wave Lithotripsy (ESWL) is the most commonplace remedy for kidney stone. Shock waves from outside the body frame are centered at a kidney stone inflicting the stone to fragment. The success of the (ESWL) treatment is based on some variables such as age, sex, stone quantity stone period and so on. Thus, the prediction the success of remedy by this method is so important for professionals to make a decision to continue using (ESWL) or tousing another remedy technique. In this study, a prediction system for (ESWL) treatment by used three techniques of mixing classifiers, which is Product Rule (PR), Neural Network (NN) and the proposed classifier called Nested Combined Classi
... Show MoreThis study investigates the impact of spatial resolution enhancement on supervised classification accuracy using Landsat 9 satellite imagery, achieved through pan-sharpening techniques leveraging Sentinel-2 data. Various methods were employed to synthesize a panchromatic (PAN) band from Sentinel-2 data, including dimension reduction algorithms and weighted averages based on correlation coefficients and standard deviation. Three pan-sharpening algorithms (Gram-Schmidt, Principal Components Analysis, Nearest Neighbour Diffusion) were employed, and their efficacy was assessed using seven fidelity criteria. Classification tasks were performed utilizing Support Vector Machine and Maximum Likelihood algorithms. Results reveal that specifi
... Show MoreThe Present study investigated the drought in Iraq, by using the rainfall data which obtained from 39 meteorological stations for the past 30 years (1980-2010). The drought coefficient calculated on basis of the standard precipitation index (SPI) and then characteristics of drought magnitude, duration and intensity were analyzed. The correlation and regression between magnitude and duration of drought were obtained according the (SPI) index. The result shows that drought magnitude values were greater in the northeast region of Iraq.