The increasing complexity of assaults necessitates the use of innovative intrusion detection systems (IDS) to safeguard critical assets and data. There is a higher risk of cyberattacks like data breaches and unauthorised access since cloud services have been used more frequently. The project's goal is to find out how Artificial Intelligence (AI) could enhance the IDS's ability to identify and classify network traffic and identify anomalous activities. Online dangers could be identified with IDS. An intrusion detection system, or IDS, is required to keep networks secure. We must create efficient IDS for the cloud platform as well, since it is constantly growing and permeating more aspects of our daily life. However, using standard intrusion detection systems in the cloud may provide challenges. The pre-established IDS design may overburden a cloud segment due to the additional detection overhead. Within the framework of an adaptively designed networked system. We demonstrate how to fully use available resources without placing undue load on any one cloud server using an intrusion detection system (IDS) based on neural networks. To even more successfully detect new threats, the suggested IDS make use of neural network machine learning (ML).
This study aimed at recognizing the impact of empowerment of human resources strategy on enhancing the financial performance in working banks in Jordan, the axes of the strategy were: informative sharing, free and independence, working teams, and organizational power. To achieve the objective of the study, a questionnaire is designed and distributed on the sample of the study, which represented 60 employees of Banks. After analyzing the data by using SPSS, the study resulted that there is positive impact of empowerment of human resources strategy on enhancing the financial performance in working banks in Jordan. It suggested that the working banks in Jordan should establish database, and to create working teams.
... Show MoreAbstract:
The research seeks to explain the role of the international auditing standard (3402) in the auditor's procedures, where the importance of the research stems from the adoption of international auditing standards in the Iraqi environment, including the standard (3402) of assurance engagements that the external auditor performs by submitting reports on the design of control tools and their operational effectiveness in a service facility that provides the beneficiaries with a service. To provide useful information for service organizations The control tools are of great benefit in rationalizing decisions, and many recommen
Objectives: This study aims to evaluate the role of social media in promoting awareness of green university initiatives and assess the effectiveness of sustainability reports in engaging students at Baghdad University. In alignment with Sustainable Development Goal 12 (Responsible Consumption and Production),It seeks to provide recommendations for enhancing digital platforms for sustainability communication. Theoretical Framework: The study is grounded in the Green University Model, Social Media Engagement Theory, and the Sustainability Reporting Framework, which emphasize integrating sustainable practices in education, using digital platforms for community engagement, and leveraging sustainability reports for transparency and
... Show MoreThe research aims to Measuring the auditors' commitment with the analytical procedures of the economic units of the research sample in carrying out their professional duties and the importance of this commitment to the tax administration and the extent of their reliance on the external auditor's report and the financial statements in determining the income tax and its effect on the tax revenues.
The research depends on a main hypothesis stating that "The use of analytical procedures by the external auditor has a positive impact on the availability of confidence and credibility in the financial statements presented to the tax administration and has a positive impact on the tax revenues."
The resear
... Show MoreAmputation of the upper limb significantly hinders the ability of patients to perform activities of daily living. To address this challenge, this paper introduces a novel approach that combines non-invasive methods, specifically Electroencephalography (EEG) and Electromyography (EMG) signals, with advanced machine learning techniques to recognize upper limb movements. The objective is to improve the control and functionality of prosthetic upper limbs through effective pattern recognition. The proposed methodology involves the fusion of EMG and EEG signals, which are processed using time-frequency domain feature extraction techniques. This enables the classification of seven distinct hand and wrist movements. The experiments conducte
... Show MoreIn this paper the process of metal ions extraction (Zn(II) and Cu(II)) was studied in PEG-KCl aqueous two phase system was investigated without using an extracting agent. The experimental runs were performance at constant temperature (25 oC), constant mixing time (30 min), and constant PH of the solution (about 3). The effect of KCl salt concentration (from 10% to 25%), volumetric phase ratio of PEG solution to KCl solution (from 0.5 to 2), and the initial metal ion concentration (from 0.25 ml to 2 ml of 1 gm/L solution) were investigated on the percent extraction of Zn(II) and Cu(II). The results indicated that the percent extraction of metal ions increase with increasing of salt concentration and phase ratio, and slightly de
... Show More
Early detection of eye diseases can forestall visual deficiency and vision loss. There are several types of human eye diseases, for example, diabetic retinopathy, glaucoma, arteriosclerosis, and hypertension. Diabetic retinopathy (DR) which is brought about by diabetes causes the retinal vessels harmed and blood leakage in the retina. Retinal blood vessels have a huge job in the detection and treatment of different retinal diseases. Thus, retinal vasculature extraction is significant to help experts for the finding and treatment of systematic diseases. Accordingly, early detection and consequent treatment are fundamental for influenced patients to protect their vision. The aim of this paper is to detect blood vessels from
... Show MoreThe development of Web 2.0 has improved people's ability to share their opinions. These opinions serve as an important piece of knowledge for other reviewers. To figure out what the opinions is all about, an automatic system of analysis is needed. Aspect-based sentiment analysis is the most important research topic conducted to extract reviewers-opinions about certain attribute, for instance opinion-target (aspect). In aspect-based tasks, the identification of the implicit aspect such as aspects implicitly implied in a review, is the most challenging task to accomplish. However, this paper strives to identify the implicit aspects based on hierarchical algorithm incorporated with common-sense knowledge by means of dimensionality reduction.
Cassava, a significant crop in Africa, Asia, and South America, is a staple food for millions. However, classifying cassava species using conventional color, texture, and shape features is inefficient, as cassava leaves exhibit similarities across different types, including toxic and non-toxic varieties. This research aims to overcome the limitations of traditional classification methods by employing deep learning techniques with pre-trained AlexNet as the feature extractor to accurately classify four types of cassava: Gajah, Manggu, Kapok, and Beracun. The dataset was collected from local farms in Lamongan Indonesia. To collect images with agricultural research experts, the dataset consists of 1,400 images, and each type of cassava has
... Show More