The increasing complexity of assaults necessitates the use of innovative intrusion detection systems (IDS) to safeguard critical assets and data. There is a higher risk of cyberattacks like data breaches and unauthorised access since cloud services have been used more frequently. The project's goal is to find out how Artificial Intelligence (AI) could enhance the IDS's ability to identify and classify network traffic and identify anomalous activities. Online dangers could be identified with IDS. An intrusion detection system, or IDS, is required to keep networks secure. We must create efficient IDS for the cloud platform as well, since it is constantly growing and permeating more aspects of our daily life. However, using standard intrusion detection systems in the cloud may provide challenges. The pre-established IDS design may overburden a cloud segment due to the additional detection overhead. Within the framework of an adaptively designed networked system. We demonstrate how to fully use available resources without placing undue load on any one cloud server using an intrusion detection system (IDS) based on neural networks. To even more successfully detect new threats, the suggested IDS make use of neural network machine learning (ML).
Shaky Baghdad heavy crude oil 22 API is processed by distillation and solvent extraction. The purpose of distillation is to separate the light distillates (light fractions) which represent 35% of heavy crude oil, and to obtain the reduced crude oil. The heavy residue (9 API) is extracted with Iraqi light naphtha to get the deasphaltened oil (DAO), the extraction carried out with temperature range of 20-75 oC, solvent to oil ratio 5-15:1(ml:g) and a mixing time of 15 minutes. In general, results show that API of DAO increased twice the API of reduced crude oil while sulfur and metals content decreased 20% and 50% respectively. Deasphaltened oil produced from various operating conditions blended with the
... Show MoreDepletion of fossil fuel is one of the main reasons why the bioethanol has become popular. It is a renewable energy source. In order to meet the great demand of bioethanol, it is best that the bioethanol production is from cheap raw materials. Since the golden shower fruit is not being utilized and is considered as waste material, hence, this study was conducted to make use of the large volume of the residue as feedstock to test its potential for bioethanol extraction.The main goal of this study is to obtain the most volume of bioethanol from the golden shower fruit liquid residue by the factors, days of fermentation (3, 5, and 7 days) and sugar concentration (15, 20 and 25 brix) of the liquid residue. Also, part of the study is to compu
... Show MoreIn this paper, an algorithm for reconstruction of a completely lost blocks using Modified
Hybrid Transform. The algorithms examined in this paper do not require a DC estimation
method or interpolation. The reconstruction achieved using matrix manipulation based on
Modified Hybrid transform. Also adopted in this paper smart matrix (Detection Matrix) to detect
the missing blocks for the purpose of rebuilding it. We further asses the performance of the
Modified Hybrid Transform in lost block reconstruction application. Also this paper discusses
the effect of using multiwavelet and 3D Radon in lost block reconstruction.
Social Networking has dominated the whole world by providing a platform of information dissemination. Usually people share information without knowing its truthfulness. Nowadays Social Networks are used for gaining influence in many fields like in elections, advertisements etc. It is not surprising that social media has become a weapon for manipulating sentiments by spreading disinformation. Propaganda is one of the systematic and deliberate attempts used for influencing people for the political, religious gains. In this research paper, efforts were made to classify Propagandist text from Non-Propagandist text using supervised machine learning algorithms. Data was collected from the news sources from July 2018-August 2018. After annota
... Show MoreSupport vector machines (SVMs) are supervised learning models that analyze data for classification or regression. For classification, SVM is widely used by selecting an optimal hyperplane that separates two classes. SVM has very good accuracy and extremally robust comparing with some other classification methods such as logistics linear regression, random forest, k-nearest neighbor and naïve model. However, working with large datasets can cause many problems such as time-consuming and inefficient results. In this paper, the SVM has been modified by using a stochastic Gradient descent process. The modified method, stochastic gradient descent SVM (SGD-SVM), checked by using two simulation datasets. Since the classification of different ca
... Show MoreThe variability of Candaharia levanderi (Simroth, 1902)(Gastropoda, Stylommatophora, Parmacellidae) in two biotopes (southern and northern slopes, the Kampirtepa gorges, the Kugitang Tau ridge) has been investigated using polymerase chain reaction (PCR) with the implementation of primers, the 18S DNA of the region is amplified, the variability (sharply differing in color) of two populations of C. levanderi is studied .
The first population is in the suburbs of Namangan, (Namangan Region); the second population is in Kampirtepa gorges, Kugitang Tau ridge (Surkhandarya Region). It is established that, most often, the variability of morphological signs is observed on the coloration of mollusks. The development of body coloration is an ad
Transit agencies constantly need information about system operations and passengers to support their regular scheduling and operation planning processes. The lack of these processes and cultural motivations to use public transportations contributes enormously to the reliance on the private cars rather than public transportation, resulting in traffic congestions. The traffic congestions occur mainly during peak hours and the accidents happening as a result of road accidents and construction works. This study investigates the effects of weekday and weekend travel variability on peak hours of the passenger flow distribution on bus lines, which can effectively reflect the degree of traffic congestion. A study of passen
... Show MoreThe performance and durability of the asphalt pavement structure mainly depend on the strength of the bonding between the layers. Such a bond is achieved through the use of an adhesive material (tack coat) to bond the asphalt layers. The main objective of this study is to evaluate the effect of moisture in conjunction with repeated traffic loads on the strength of the bonding between asphalt layers using two types of tack coats with different application rates. Using the nominal maximum size of aggregate (NMAS), the layers were graded (25/19) and (19/9.5) mm. The slabs of multilayer asphalt concrete were prepared using a roller compactor using two types of tack coats to bond between layers, namely rapid curing cut back a
... Show MoreIntroduction: Melanin is a high-molecular weight pigment produced through the oxidative polymerization of phenolic or indolic compounds and plays a perfect role in UV-light shielding, as well as in photoprotection. Among biopolymers, melanin is unique in many aspects. This study is designed to screen Production, extraction and characterizes of an extracellular melanin pigment from clinically isolated P. aeruginosa. Objective: The aim of the current study is isolation and diagnosis of P.aeruginosa using vitek-2 compact system and screening the ability to produce melanin and characterization of extracted melanin by UV-vis, FTIR, XRD and SEM. Materials and methods: the samples swab inoculated on cetrimide agar as selective media and incubated
... Show MoreRemote sensing provide the best means to monitoring change in vegetation over a wide range of temporal scales over large areas. In this study, the vegetation index which has been applied known as the Stress Related Vegetation Index (STVI) on in the area around the Euphrates River and part of Al-Habbaniyah lake which located at western side of the river in Ramadi city, Al-Anbar province at Iraq to study the vegetation cover changes and detect the areas of changes, using two satellite sensors multispectral images such as TM and ALI, after geometric correction procedure to rectifying these images. The STVI-4 index result was the best than other vegetation indices (STVI-1 and STVI-3) to discriminate the vegetable cover distribution. The diff
... Show More