In this work, the surface of the telescope’s mirror is cleaned using an atmospheric-pressure radio frequency plasma jet (APRFPJ), which is generated by Argon gas between two coaxial metal electrodes. The RF power supply is set to 2 MHz frequencies with three different power levels: 20, 50, and 80 W. Carbon, that has adhered to the surface, can be effectively removed using the plasma cleaning technique, which also modifies any residual bonds. The cleaned surface was clearly distinguished using an optical emission spectroscopy (OES) technique and a water contact angle (WCA) analyzer for the activation property on their surfaces. The sample showed a super hydrophilic surface at an angle of 1° after 2.5 minutes of plasma treatment, as determined by the WCA technique, and an analysis of its optical properties showed that its reflectance had increased from 75% before cleaning to 98% after cleaning. Using the OES technique, the RF plasma jet's spectrum can be observed to contain the ArI, ArII, and NI lines.
This work addressed the assignment problem (AP) based on fuzzy costs, where the objective, in this study, is to minimize the cost. A triangular, or trapezoidal, fuzzy numbers were assigned for each fuzzy cost. In addition, the assignment models were applied on linguistic variables which were initially converted to quantitative fuzzy data by using the Yager’sorankingi method. The paper results have showed that the quantitative date have a considerable effect when considered in fuzzy-mathematic models.
Image Fusion Using A Convolutional Neural Network
Steganography can be defined as the art and science of hiding information in the data that could be read by computer. This science cannot recognize stego-cover and the original one whether by eye or by computer when seeing the statistical samples. This paper presents a new method to hide text in text characters. The systematic method uses the structure of invisible character to hide and extract secret texts. The creation of secret message comprises four main stages such using the letter from the original message, selecting the suitable cover text, dividing the cover text into blocks, hiding the secret text using the invisible character and comparing the cover-text and stego-object. This study uses an invisible character (white space
... Show MoreRecognizing speech emotions is an important subject in pattern recognition. This work is about studying the effect of extracting the minimum possible number of features on the speech emotion recognition (SER) system. In this paper, three experiments performed to reach the best way that gives good accuracy. The first one extracting only three features: zero crossing rate (ZCR), mean, and standard deviation (SD) from emotional speech samples, the second one extracting only the first 12 Mel frequency cepstral coefficient (MFCC) features, and the last experiment applying feature fusion between the mentioned features. In all experiments, the features are classified using five types of classification techniques, which are the Random Forest (RF),
... Show MoreScientific development has occupied a prominent place in the field of diagnosis, far from traditional procedures. Scientific progress and the development of cities have imposed diseases that have spread due to this development, perhaps the most prominent of which is diabetes for accurate diagnosis without examining blood samples and using image analysis by comparing two images of the affected person for no less than a period. Less than ten years ago they used artificial intelligence programs to analyze and prove the validity of this study by collecting samples of infected people and healthy people using one of the Python program libraries, which is (Open-CV) specialized in measuring changes to the human face, through which we can infer the
... Show More
Face Identification is an important research topic in the field of computer vision and pattern recognition and has become a very active research area in recent decades. Recently multiwavelet-based neural networks (multiwavenets) have been used for function approximation and recognition, but to our best knowledge it has not been used for face Identification. This paper presents a novel approach for the Identification of human faces using Back-Propagation Adaptive Multiwavenet. The proposed multiwavenet has a structure similar to a multilayer perceptron (MLP) neural network with three layers, but the activation function of hidden layer is replaced with multiscaling functions. In experiments performed on the ORL face database it achieved a
... Show More