In this work, the surface of the telescope’s mirror is cleaned using an atmospheric-pressure radio frequency plasma jet (APRFPJ), which is generated by Argon gas between two coaxial metal electrodes. The RF power supply is set to 2 MHz frequencies with three different power levels: 20, 50, and 80 W. Carbon, that has adhered to the surface, can be effectively removed using the plasma cleaning technique, which also modifies any residual bonds. The cleaned surface was clearly distinguished using an optical emission spectroscopy (OES) technique and a water contact angle (WCA) analyzer for the activation property on their surfaces. The sample showed a super hydrophilic surface at an angle of 1° after 2.5 minutes of plasma treatment, as determined by the WCA technique, and an analysis of its optical properties showed that its reflectance had increased from 75% before cleaning to 98% after cleaning. Using the OES technique, the RF plasma jet's spectrum can be observed to contain the ArI, ArII, and NI lines.
This paper reports test results and describes a numerical investigation of the effectiveness of using carbon fibre reinforced polymer (CFRP) fabrics for strengthening concrete cylinders that have been undamaged and damaged due to heating under preload. The purpose of this research was to investigate whether there is any difference in the performance of CFRP-wrapped cylinders if the wrapping is done under preload, and those for which neither heating, cooling nor wrapping was done under preload. The cylinders were exposed to 30% of maximum load at ambient temperature during heating and cooling before being wrapped under preload. Of 18 Ø 100 × 200 mm identical cylinders, 6 were left as control samples without heating, 12 were exposed t
... Show MoreThe increase globally fossil fuel consumption as it represents the main source of energy around the world, and the sources of heavy oil more than light, different techniques were used to reduce the viscosity and increase mobility of heavy crude oil. this study focusing on the experimental tests and modeling with Back Feed Forward Artificial Neural Network (BFF-ANN) of the dilution technique to reduce a heavy oil viscosity that was collected from the south- Iraq oil fields using organic solvents, organic diluents with different weight percentage (5, 10 and 20 wt.% ) of (n-heptane, toluene, and a mixture of different ratio
... Show MoreA simple and rapid high performance liquid chromatographic with fluorescence detection method for the determination of the aflatoxin B1, B2, G1 and G2 in peanuts, rice and chilli was developed. The sample was extracted using acetonitrile:water (90:10, v/v%) and then purified by using ISOLUTE multimode solid phase extraction. After the pre-column derivatisation, the analytes were separated within 3.7 min using Chromolith performance RP-18e (100–4.6 mm) monolithic column. To assess the possible effects of endogenous components in the food items, matrix-matched calibration was used for the quantification and validation. The recoveries of aflatoxins that were spiked into food samples were 86.38–104.5% and RSDs were <4.4%. The method was
... Show MoreThe accuracy of the Moment Method for imposing no-slip boundary conditions in the lattice Boltzmann algorithm is investigated numerically using lid-driven cavity flow. Boundary conditions are imposed directly upon the hydrodynamic moments of the lattice Boltzmann equations, rather than the distribution functions, to ensure the constraints are satisfied precisely at grid points. Both single and multiple relaxation time models are applied. The results are in excellent agreement with data obtained from state-of-the-art numerical methods and are shown to converge with second order accuracy in grid spacing.
A finite element is a study that is capable of predicting crack initiation and simulating crack propagation of human bone. The material model is implemented in MATLAB finite element package, which allows extension to any geometry and any load configuration. The fracture mechanics parameters for transverse and longitudinal crack propagation in human bone are analyzed. A fracture toughness as well as stress and strain contour are generated and thoroughly evaluated. Discussion is given on how this knowledge needs to be extended to allow prediction of whole bone fracture from external loading to aid the design of protective systems.
In developing countries, conventional physico-chemical methods are commonly used for removing contaminants. These methods are not efficient and very costly. However, new in site strategy with high treatment efficiency and low operation cost named constructed wetland (CW) has been set. In this study, Phragmites australis was used with free surface batch system to estimate its ability to remediate total
petroleum hydrocarbons (TPH) and chemical oxygen demand (COD) from Al-Daura refinery wastewater. The system operated in semi-batch, thus, new wastewater was weekly added to the plant for 42 days. The results showed high removal percentages (98%) of TPH and (62.3%) for COD. Additionally, Phragmites australis biomass increased significant
This study was conducted to determine the Immuno – globulins and complements quantitatively. The result revealed that the concentration of Immunoglobulin M(IgM) was increased significantly in patient group comparing with control group . The concentration of complement protein C4 was increased significantly in patient group comparing with control group.IgG of Candida albicans was detected by using ELISA Technique, the result indicated also that this antibody was found in 628% of the women who infected with Vulvovaginal Candidiasis. The sensitivity and specificity of the test were 63% and 89% respectively.
In this study, a genetic algorithm (GA) is used to detect damage in curved beam model, stiffness as well as mass matrices of the curved beam elements is formulated using Hamilton's principle. Each node of the curved beam element possesses seven degrees of freedom including the warping degree of freedom. The curved beam element had been derived based on the Kang and Yoo’s thin-walled curved beam theory. The identification of damage is formulated as an optimization problem, binary and continuous genetic algorithms
(BGA, CGA) are used to detect and locate the damage using two objective functions (change in natural frequencies, Modal Assurance Criterion MAC). The results show the objective function based on change in natural frequency i