Preferred Language
Articles
/
vRfupo0BVTCNdQwCeBdd
Granular computing approach for the design of medical data classification systems
...Show More Authors

Scopus Crossref
View Publication
Publication Date
Sun Mar 01 2009
Journal Name
Al-khwarizmi Engineering Journal
A Proposed Artificial Intelligence Algorithm for Assessing of Risk Priority for Medical Equipment in Iraqi Hospital
...Show More Authors

This paper presents a robust algorithm for the assessment of risk priority for medical equipment based on the calculation of static and dynamic risk factors and Kohnen Self Organization Maps (SOM). Four risk parameters have been calculated for 345 medical devices in two general hospitals in Baghdad. Static risk factor components (equipment function and physical risk) and dynamics risk components (maintenance requirements and risk points) have been calculated. These risk components are used as an input to the unsupervised Kohonen self organization maps. The accuracy of the network was found to be equal to 98% for the proposed system. We conclude that the proposed model gives fast and accurate assessment for risk priority and it works as p

... Show More
View Publication Preview PDF
Publication Date
Wed Jan 01 2020
Journal Name
International Journal Of Computing
Twitter Location-Based Data: Evaluating the Methods of Data Collection Provided by Twitter Api
...Show More Authors

Twitter data analysis is an emerging field of research that utilizes data collected from Twitter to address many issues such as disaster response, sentiment analysis, and demographic studies. The success of data analysis relies on collecting accurate and representative data of the studied group or phenomena to get the best results. Various twitter analysis applications rely on collecting the locations of the users sending the tweets, but this information is not always available. There are several attempts at estimating location based aspects of a tweet. However, there is a lack of attempts on investigating the data collection methods that are focused on location. In this paper, we investigate the two methods for obtaining location-based dat

... Show More
View Publication
Scopus (4)
Crossref (1)
Scopus Crossref
Publication Date
Fri Jan 01 2010
Journal Name
Conference Proceedings
Assessing the accuracy of 'crowdsourced' data and its integration with official spatial data sets
...Show More Authors

Scopus (20)
Scopus
Publication Date
Tue Dec 05 2023
Journal Name
Baghdad Science Journal
Indoor/Outdoor Deep Learning Based Image Classification for Object Recognition Applications
...Show More Authors

With the rapid development of smart devices, people's lives have become easier, especially for visually disabled or special-needs people. The new achievements in the fields of machine learning and deep learning let people identify and recognise the surrounding environment. In this study, the efficiency and high performance of deep learning architecture are used to build an image classification system in both indoor and outdoor environments. The proposed methodology starts with collecting two datasets (indoor and outdoor) from different separate datasets. In the second step, the collected dataset is split into training, validation, and test sets. The pre-trained GoogleNet and MobileNet-V2 models are trained using the indoor and outdoor se

... Show More
View Publication Preview PDF
Scopus (6)
Scopus Crossref
Publication Date
Sun Dec 31 2023
Journal Name
International Journal Of Intelligent Engineering And Systems
A Ranked-Aware GA with HoG Features for Infant Cry Classification
...Show More Authors

View Publication
Scopus (1)
Scopus Crossref
Publication Date
Sun Dec 01 2024
Journal Name
Baghdad Science Journal
Densenet Model for Binary Glaucoma Classification Performance Assessment with Texture Feature
...Show More Authors

تعتبر شبكية العين جزءًا مهمًا من العين لأن الأطباء يستخدمون صورها لتشخيص العديد من أمراض العيون مثل الجلوكوما واعتلال الشبكية السكري وإعتام عدسة العين. في الواقع، يعد تصوير الشبكية المجزأ أداة قوية للكشف عن النمو غير العادي في منطقة العين بالإضافة إلى تحديد حجم وبنية القرص البصري. يمكن أن يؤدي الجلوكوما إلى إتلاف القرص البصري، مما يغير مظهر القرص البصري للعين. تعمل تقنيتنا على الكشف عن الجلوكوما وتصنيفه

... Show More
View Publication
Scopus (1)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Sun Dec 01 2019
Journal Name
Computers And Electronics In Agriculture
Meteorological data mining and hybrid data-intelligence models for reference evaporation simulation: A case study in Iraq
...Show More Authors

View Publication
Crossref (112)
Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Education For Health
Determinants of social accountability for medical schools in Iraq: A qualitative case study
...Show More Authors

View Publication
Scopus (1)
Scopus Clarivate Crossref
Publication Date
Thu Mar 22 2018
Journal Name
Association Of Arab Universities Journal Of Engineering Sciences
Assessment of medical solid waste generation rates for teaching hospitals in Baghdad city
...Show More Authors

Publication Date
Sun Feb 25 2024
Journal Name
Baghdad Science Journal
Simplified Novel Approach for Accurate Employee Churn Categorization using MCDM, De-Pareto Principle Approach, and Machine Learning
...Show More Authors

Churning of employees from organizations is a serious problem. Turnover or churn of employees within an organization needs to be solved since it has negative impact on the organization. Manual detection of employee churn is quite difficult, so machine learning (ML) algorithms have been frequently used for employee churn detection as well as employee categorization according to turnover. Using Machine learning, only one study looks into the categorization of employees up to date.  A novel multi-criterion decision-making approach (MCDM) coupled with DE-PARETO principle has been proposed to categorize employees. This is referred to as SNEC scheme. An AHP-TOPSIS DE-PARETO PRINCIPLE model (AHPTOPDE) has been designed that uses 2-stage MCDM s

... Show More
View Publication Preview PDF
Scopus (5)
Crossref (4)
Scopus Crossref